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This file contains the text ofProfessional Programmer’s Guide to Fortran77published by Pitman in
1988. The book is now long out of print, so it seemed sensible to make the text freely available over
the Internet. The ISO Standard for Fortran77 is, of course, now obsolete, since Fortran90 and Fortran95
have replaced it. I strongly recommend using Fortran95 as a multitude of features have been added to
Fortran which make programming easier and programs more reliable.

One of the attractions of Fortran77 is that a good free compiler exists in the form of GNU Fortran,
g77. At present I don’t know of any free compilers for full Fortran95, but you can download a compiler
for a subset language called F, which seems an excellent way to learn modern Fortran. Unfortunately this
book will not be much help with F or Fortran95. Perhaps some day I may get time to revise it completely.

For more information on Fortran (and F) see these web-sites, which have links to many others:
http://www.star.le.ac.uk/˜cgp My home page
http://www.fortran.com/ Fortran Market and F home page
http://www.ifremer.fr/ditigo/

molagnon/fortran90/engfaq.html
Excellent FAQ

http://dsm.dsm.fordham.edu/
˜ftnchek/

FTNCHEK static analyzer

Whether you write your own programs in Fortran77, or merely use code written by others, I strongly urge
you to use FTNCHEK syntax checker to find mistakes. You can download versions for many platforms
from the web-site listed above.

I wrote the book originally using WordPerfect, but later translated it into LATEX to make it easier to
produce on-line versions in HTML and Postscript. The text here is very similar to the published version
but I took the opportunity to correct a few mistakes and make some very minor updates. If you find more
errors, please let me know (email toc (at-sign)page.demon.co.uk ).

The book was intentionally kept as short as possible so it could be sold at a modest price, but I
managed to cover the entire Fortran77 language as defined in the ANSI and ISO Standards, including
several topics which are often omitted from much larger textbooks because they are deemed to be too
“advanced”.
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In order to encourage the writing of clear, reliable, portable, robust, and well structured code, short
sections appear throughout the book offering specific guidance on the the practical use of Fortran. Ob-
solete or superfluous features of the language, mainly those which have been retained for compatibility
with earlier versions of Fortran, are omitted from the main text but are covered in the section 13. This
is provided solely for the assistance of those who have to cope with existing poorly-written programs or
ones which pre-date the Fortran77 standard.
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1 What Is Fortran?

Fortran is the most widely used programming language in the world for numerical applications. It has
achieved this position partly by being on the scene earlier than any of the other major languages and
partly because it seems gradually to have evolved the features which its users, especially scientists and
engineers, found most useful. In order to retain compatibility with old programs, Fortran has advanced
mainly by adding new features rather than by removing old ones. The net result is, of course, that some
parts of the language are, by present standards, rather archaic: some of these can be avoided easily, others
can still be a nuisance.

This section gives a brief history of the language, outlines its future prospects, and summarises its
strengths and weaknesses.

1.1 Early Development

Fortran was invented by a team of programmers working for IBM in the early nineteen-fifties. This
group, led by John Backus, produced the first compiler, for an IBM 704 computer, in 1957. They used
the name Fortran because one of their principal aims was “formula translation”. But Fortran was in
fact one of the very first high-level language: it came complete with control structures and facilities
for input/output. Fortran became popular quite rapidly and compilers were soon produced for other
IBM machines. Before long other manufacturers were forced to design Fortran compilers for their own
hardware. By 1963 all the major manufacturers had joined in and there were dozens of different Fortran
compilers in existence, many of them rather more powerful than the original.

All this resulted in a chaos of incompatible dialects. Some order was restored in 1966 when an
American national standard was defined for Fortran. This was the first time that a standard had ever
been produced for a computer programming language. Although it was very valuable, it hardly checked
the growth of the language. Quite deliberately the Fortran66 standard only specified a set of language
features which had to be present: it did not prevent other features being added. As time went on these ex-
tensions proliferated and the need for a further standardization exercise became apparent. This eventually
resulted in the current version of the language: Fortran77.

1.2 Standardization

One of the most important features of Fortran programs is their portability, that is the ease with which
they can be moved from one computer system to another. Now that each generation of hardware succeeds
the previous one every few years, while good software often lasts for much longer, more and more
programs need to be portable. The growth in computer networks is also encouraging the development of
portable programs.

The first step in achieving portability is to ensure that a standard form of programming language
is acceptable everywhere. This need is now widely recognised and has resulted in the development of
standards for all the major programming languages. In practice, however, many of the new standards
have been ignored and standard-conforming systems for languages like Basic and Pascal are still very
rare.

Fortunately Fortran is in much better shape: almost all current Fortran systems are designed to con-
form to the standard usually called Fortran77. This was produced in 1977 by a committee of the Amer-
ican National Standards Institute (ANSI) and was subsequently adopted by the International Standards
Organisation (ISO). The definition was published as ANSI X3.9-1978 and ISO 1539-1980. The term
“Standard Fortran” will be used in the rest of this book to refer to mean Fortran77 according to this
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definition.

Fortran is now one of the most widely used computer languages in the world with compilers available
for almost every type of computer on the market. Since Fortran77 is quite good at handling character
strings as well as numbers and also has powerful file-handling and input/output facilities, it is suitable
for a much wider range of applications than before.

Full and Subset Fortran

The ANSI Standard actually defines two different levels for Fortran77. The simpler form, subset Fortran,
was intended for use on computers which were too small to handle the full language. Now that even
personal computers are powerful enough to handle full Fortran77, subset Fortran is practically obsolete.
This book, therefore, only describes full Fortran77.

Fortran90

The ISO Standard for Fortran90 has, officially, replaced that for Fortran77. It introduces a wealth of new
features many of them already in use in other high-level languages, which will make programming easier,
and facilitate the construction of portable and robust programs. The whole of the Fortran77 Standard
is included as a proper subset, so existing (standard-conforming) Fortran programs will automatically
conform also to the new Standard. Until well-tested compilers for Fortran90 are widespread, however,
most programmers are still using Fortran77, with perhaps a few minor extensions.

1.3 Strengths and Weaknesses

Fortran has become popular and widespread because of its unique combination of properties. Its numer-
ical and input/output facilities are almost unrivalled while those for logic and character handling are as
good as most other languages. Fortran is simple enough that you do not need to be a computer special-
ist to become familiar with it fairly quickly, yet it has features, such as the independent compilation of
program units, which allow it to be used on very large applications. Programs written in Fortran are also
more portable than those in other major languages. The efficiency of compiled code also tends to be
quite high because the language is straight-forward to compile and techniques for handling Fortran have
reached a considerable degree of refinement. Finally, the ease with which existing procedures can be
incorporated into new software makes it especially easy to develop new programs out of old ones.

It cannot be denied, however, that Fortran has more than its fair share of weaknesses and drawbacks.
Many of these have existed in Fortran since it was first invented and ought to have been eliminated long
ago: examples include the 6-character limit on symbolic names, the fixed statement layout, and the need
to use statement labels.

Fortran also has rather liberal rules and an extensive system of default values: while this reduces
programming effort it also makes it harder for the system to detect the programmer’s mistakes. In many
other programming languages, for example, the data type of every variable has to be declared in advance.
Fortran does not insist on this but, in consequence, if you make a spelling mistake in a variable name the
compiler is likely to use two variables when you only intended to use one. Such errors can be serious but
are not always easy to detect.

Fortran also lacks various control and data structures which simplify programming languages with a
more modern design. These limitations, and others, are all eliminated with the advent of Fortran90.
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1.4 Precautions

Extensions and Portability

Computer manufacturers have a natural tendency to compete with each other by providing Fortran sys-
tems which are “better” than before, usually by providing extensions to the language. This does not
conflict with the Fortran Standard, provided that standard-conforming programs are still processed cor-
rectly. Indeed in the long term languages advance by the absorbtion of such extensions. In the short term,
however, their use is more problematical, since they necessarily makes programs less portable.

When the latest Fortran Standard was issued in 1977 there was fairly widespread disappointment that
it did not go just a little further in eliminating some of the tiresome restrictions that had persisted since
the early days. The US Department of Defense issued a short list of extensions which manufacturers
were encouraged to add to their Fortran77 systems. The most important of these were the following:

• theEND DOstatement

• theDO WHILEloop

• theINCLUDEstatement

• theIMPLICIT NONE facility

• intrinsic functions for bit-wise operations on integers.

Many Fortran systems, especially those produced in the United States, now support these extensions
but they are by no means universal and should not be used in portable programs.

One of the most irksome restrictions of Fortran77 is that symbolic names cannot be more than six
characters long. This forces programmers to devise all manner of contractions, abbreviations, and
acronyms in place of meaningful symbolic names. It is very tempting to take advantage of systems
which relax this rule but this can have serious repercussions. Consider a program which makes use of
variables called TEMPERATURE and TEMPERED. Many compilers will be quite happy with these,
though a few will reject both names on grounds of length. Unfortunately there are also one or two com-
pilers in existence which will simply ignore all letters after the sixth so that both names will be taken as
references to the same variable, TEMPER. Such behaviour, while deplorable, is quite in accordance with
the Standard which only requires systems to compile programs correctly if they conform to its rules.

The only way to be certain of avoiding problems like this is to ignore such temptations entirely and
just use Standard Fortran. Many compilers provide a switch or option which can be set to cause all non-
standard syntax to be flagged. Everything covered in this book is part of Standard Fortran unless clearly
marked to the contrary.

Guidelines

Computer programming always requires a very high standard of care and accuracy if it is to be successful.
This is even more vital when using Fortran than with some other languages, because, as explained above,
the liberal rules of Fortran make it harder for the system to detect mistakes. To program successfully it
is not enough just to conform to the rules of the language, it is also important to defend yourself against
known pitfalls.

There is a useful lesson to be learned from the failure of one of the earliest planetary probes launched
by NASA. The cause of the failure was eventually traced to a statement in its control software similar to
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this:
DO 15 I = 1.100

when what should have been written was:
DO 15 I = 1,100

but somehow a dot had replaced the comma. Because Fortran ignores spaces, this was seen by the
compiler as:

DO15I = 1.100
which is a perfectly valid assignment to a variable called DO15I and not at all what was intended.

Fortran77 permits an additional comma to be inserted after the label in aDOstatement, so it could
now be written as:

DO 15,I = 1,100
which has the great advantage that it is no longer as vulnerable to a single-point failure.

There are many hazards of this sort in Fortran, but the risk of falling victim to them can be minimised
by adopting the programming practices of more experienced users. To help you, various recommen-
dations and guidelines are given throughout this book. Some of the most outdated and unsatisfactory
features of Fortran are not described in the main part of the book at all but have been relegated to section
13.

There is not room in a book of this size to go further into the techniques of program design and
software engineering. As far as possible everything recommended here is consistent with the methods
of modular design and structured programming, but you should study these topics in more detail before
embarking on any large-scale programming projects.

2 Basic Fortran Concepts

This section presents some of the basic ideas of Fortran by showing some complete examples. In the
interests of simplicity, the problems which these solve are hardly beyond the range of a good pocket
calculator, and the programs shown here do not include various refinements that would usually be present
in professional software. They are, however, complete working programs which you can try out for
yourself if you have access to a Fortran system. If not, it is still worth reading through them to see how
the basic elements of Fortran can be put together into complete programs.

2.1 Statements

To start with, here is one of the simplest program that can be devised:

PROGRAM TINY
WRITE(UNIT=*, FMT=*) ’Hello, world’
END

As you can probably guess, all this program does is to send a rather trite message “Hello, world” to your
terminal. Even so its layout and structure deserve some explanation.

The program consists of three lines, each containing one statement. Each Fortran statement must
have a line to itself (or more than one line if necessary), but the first six character positions on each line
are reserved for statement labels and continuation markers. Since the statements in this example need
neither of these features, the first six columns of each line have been left blank.

The PROGRAMstatement gives a name to the program unit and declares that it is a main program
unit. Other types of program unit will be covered later on. The program can be called anything you like
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provided the name conforms to the Fortran rules; the first character of a Fortran symbolic name must be
a letter but, unfortunately, they cannot be more than six characters long in total. It is generally sensible
to give the same name to the program and to the file which holds the Fortran source code (the original
text).

TheWRITEstatement produces output: the parentheses enclose a list ofcontrol items which deter-
mine where and in what form the output appears.UNIT=* selects the standard output file which is
normally your own terminal;FMT=* selects a default output layout (technically known as list-directed
format). Asterisks are used here, as in many places in Fortran, to select a default or standard option.
This program could, in fact, have been made slightly shorter by using an abbreviated form of the WRITE
statements:

WRITE(*,*) ’Hello, world’

Although the keywordsUNIT= andFMT=are optional, they help to make the program more readable.
The items in the control list, like those in all lists in Fortran, are separated by commas.

The control information in theWRITEstatement is followed by a list of the data items to be output:
here there is just one item, a character constant which is enclosed in a pair of apostrophe (single quote)
characters.

An ENDstatement is required at the end of every program unit. When the program iscompiled
(translated into machine code) it tells the compiler that the program unit is complete; when encountered
at run-time theENDstatement stops the program running and returns control to the operating system.

The Standard Fortran character set does not contain any lower-case letters so statements generally
have to be written all in upper case. But Fortran programs can process as data any characters supported
by the machine; character constants (such as the message in the last example) are not subject to this
constraint.

2.2 Expressions and Assignments

The next example solves a somewhat more realistic problem: it computes the repayments on a fixed-term
loan (such as a home mortgage loan). The fixed payments cover the interest and repay part of the capital
sum; the annual payment can be calculated by the following formula:

payment =
rate · amount

(1− (1 + rate)−nyears)

In this formula, rate is the annual interest rate expressed as a fraction; since it is more conventional to
quote interest rates as a percentage the program does this conversion for us.

PROGRAM LOAN
WRITE(UNIT=*, FMT=*)’Enter amount, % rate, years’
READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
WRITE(UNIT=*, FMT=*)’Annual repayments are ’, REPAY
END

This example introduces two new forms of statement: theREADand assignment statements, both of
which can be used to assign new values to variables.
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The READstatement has a similar form toWRITE: here it reads in three numbers entered on the
terminal in response to the prompt and assigns their values to the three named variables.FMT=* again
selects list-directed (or free-format) input which allows the numbers to be given in any convenient form:
they can be separated by spaces or commas or even given one on each line.

The fourth statement is an assignment statement which dividesPCRATEby 100 and assigns the result
to another variable calledRATE. The next assignment statement evaluates the loan repayment formula
and assigns the result to a variable calledREPAY.

Several arithmetic operators are used in these expressions: as in most programming languages “/ ”
represents division and “* ” represents multiplication; in Fortran “** ” is used for exponentiation, i.e.
raising one number to the power of another. Note that two operators cannot appear in succession as this
could be ambiguous, so that instead of “**-N ” the form “**(-N) ” has to be used.

Another general point concerning program layout: spaces (blanks) are not significant in Fortran state-
ments so they can be inserted freely to improve the legibility of the program.

When the program is run, the terminal dialogue will look something like this:

Enter amount, % rate, years
20000, 9.5, 15
Annual repayments are 2554.873

The answer given by your system may not be exactly the same as this because the number of digits
provided by list-directed formatting depends on the accuracy of the arithmetic, which varies from one
computer to another.

2.3 Integer and Real Data Types

The LOAN program would have been more complicated if it had not taken advantage of some implicit
rules of Fortran concerning data types: this requires a little more explanation.

Computers can store numbers in several different ways: the most common numerical data types are
those called integer and real. Integer variables store numbers exactly and are mainly used to count
discrete objects. Real variables are useful many other circumstances as they store numbers using a
floating-point representation which can handle numbers with a fractional part as well as whole numbers.
The disadvantage of the real data type is that floating-point numbers are not stored exactly: typically
only the first six or seven decimal digits will be correct. It is important to select the correct type for every
data item in the program. In the last example, the number of years was an integer, but all of the other
variables were of real type.

The data type of a constant is always evident from its form: character constants, for example, are
enclosed in a pair of apostrophes. In numerical constants the presence of a decimal point indicates that
they are real and not integer constants: this is why the value one was represented as “1.0 ” and not just
“1”.

There are several ways to specify the data type of a variable. One is to use explicit type statements at
the beginning of the program. For example, the previous program could have begun like this:

PROGRAM LOAN
INTEGER NYEARS
REAL AMOUNT, PCRATE, RATE, REPAY

Although many programming languages require declarations of this sort for every symbolic name
used in the program, Fortran does not. Depending on your point of view, this makes Fortran programs
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easier to write, or allows Fortran programmers to become lazy. The reason that these declarations can
often be omitted in Fortran is that, in the absence of an explicit declaration, the data type of any item is
determined by the first letter of its name. The general rule is:

initial letters I-N integer type
initial letters A-H and O-Z real type.

In the preceding program, because the period of the loan was calledNYEARS(and not simplyYEARS)
it automatically became an integer, while all the other variables were of real type.

2.4 DOLoops

Although the annual repayments on a home loan are usually fixed, the outstanding balance does not
decline linearly with time. The next program demonstrates this with the aid of aDO-loop.

PROGRAM REDUCE
WRITE(UNIT=*, FMT=*)’Enter amount, % rate, years’
READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
WRITE(UNIT=*, FMT=*)’Annual repayments are ’, REPAY
WRITE(UNIT=*, FMT=*)’End of Year Balance’
DO 15,IYEAR = 1,NYEARS

AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY
WRITE(UNIT=*, FMT=*) IYEAR, AMOUNT

15 CONTINUE
END

The first part of the program is similar to the earlier one. It continues with anotherWRITEstatement
which produces headings for the two columns of output which will be produced later on.

TheDOstatement then defines the start of a loop: the statements in the loop are executed repeatedly
with the loop-control variableIYEAR taking successive values from 1 toNYEARS. The first statement
in the loop updates the value ofAMOUNTby adding the annual interest to it and subtracting the actual
repayment. This results inAMOUNTstoring the amount of the loan still owing at the end of the year. The
next statement outputs the year number and the latest value ofAMOUNT. After this there is aCONTINUE
statement which actually does nothing but act as a place-marker. The loop ends at theCONTINUE
statement because it is attached to the label,15 , that was specified in theDOstatement at the start of the
loop.

The active statements in the loop have been indented a little to the right of those outside it: this is not
required but is very common practice among Fortran programmers because it makes the structure of the
program more conspicuous.

The program REDUCE produces a table of values which, while mathematically correct, is not very
easy to read:

Enter amount, % rate, years
2000, 9.5, 5
Annual repayments are 520.8728
End of Year Balance

1 1669.127
2 1306.822
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3 910.0968
4 475.6832
5 2.9800416E-04

2.5 Formatted Output

The table of values would have a better appearance if the decimal points were properly aligned and if
there were only two digits after them. The last figure in the table is actually less than a thirtieth of a
penny, which is effectively zero to within the accuracy of the machine. A better layout can be produced
easily enough by using an explicit format specification instead of the list-directed output used up to now.
To do this, the lastWRITEstatement in the program should be replaced with one like this:

WRITE(UNIT=*, FMT=’(1X,I9,F11.2)’) IYEAR, AMOUNT
The amended program will then produce a neater tabulation:

Enter amount, % rate, years
2000, 9.5, 5
Annual repayments are 520.8728
End of Year Balance

1 1669.13
2 1306.82
3 910.10
4 475.68
5 .00

The format specification has to be enclosed in parentheses and, as it is actually a character constant, in
a pair of apostrophes as well. The first item in the format list,1X, is needed to cope with the carriage-
control convention: it provides an additional blank at the start of each line which is later removed by
the Fortran system. There is no logical explanation for this: it is there for compatibility with very early
Fortran system. The remaining items specify the layout of each number:I9 specifies that the first
number, an integer, should be occupy a field 9 columns wide; similarlyF11.2 puts the second number,
a real (floating-point) value, into a field 11 characters wide with exactly 2 digits after the decimal point.
Numbers are always right-justified in each field. The field widths in this example have been chosen so
that the columns of figures line up satisfactorily with the headings.

2.6 Functions

Fortran provides a useful selection of intrinsic functions to carry out various mathematical operations
such as square root, maximum and minimum, sine, cosine, etc., as well as various data type conversions.
You can also write your own functions. The next example, which computes the area of a triangle, shows
both forms of function in action.

The formulae for the area of a triangle with sides of length a, b, and c is:

s = (a + b + c)/2

area =
√

[s · (s− a) · (s− b) · (s− c)]

PROGRAM TRIANG
WRITE(UNIT=*,FMT=*)’Enter lengths of three sides:’
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READ(UNIT=*,FMT=*) SIDEA, SIDEB, SIDEC
WRITE(UNIT=*,FMT=*)’Area is ’, AREA3(SIDEA,SIDEB,SIDEC)
END

FUNCTION AREA3(A, B, C)
*Computes the area of a triangle from lengths of sides

S = (A + B + C)/2.0
AREA3 = SQRT(S * (S-A) * (S-B) * (S-C))
END

This program consists of two program units. The first is the main program, and it has as similar form to
those seen earlier. The only novel feature is that the list of items output by theWRITEstatement includes
a call to a function calledAREA3. This computes the area of the triangle. It is an external function which
is specified by means of a separate program unit technically known as a function subprogram.

The external function starts with aFUNCTIONstatement which names the function and specifies its
set of dummy arguments. This function has three dummy arguments calledA, B, andC. The values
of the actual arguments,SIDEA, SIDEB, andSIDEC, are transferred to the corresponding dummy
arguments when the function is called. Variable names used in the external function have no connection
with those of the main program: the actual and dummy argument values are connected only by their
relative position in each list. ThusSIDEA transfers its value toA, and so on. The name of the function
can be used as a variable within the subprogram unit; this variable must be assigned a value before the
function returns control, as this is the value returned to the calling program.

Within the function the dummy arguments can also be used as variables. The first assignment state-
ment computes the sum, divides it by two, and assigns it to a local variable,S; the second assignment
statement uses the intrinsic functionSQRTwhich computes the square-root of its argument. The result is
returned to the calling program by assigning it to the variable which has the same name as the function.

TheENDstatement in a procedure does not cause the program to stop but just returns control to the
calling program unit.

There is one other novelty: a comment line describing the action of the function. Any line of text can
be inserted as a comment anywhere except after anENDstatement. Comment lines have an asterisk in
the first column.

These two program units could be held on separate source files and even compiled separately. An
additional stage, usually called linking, is needed to construct the complete executable program out
of these separately compiled object modules. This seems an unnecessary overhead for such simple
programs but, as described in the next section, it has advantages when building large programs.

In this very simple example it was not really necessary to separate the calculation from the in-
put/output operations but in more complicated cases this is usually a sensible practice. For one thing
it allows the same calculation to be executed anywhere else that it is required. For another, it reduces
the complexity of the program by dividing the work up into small independent units which are easier to
manage.

2.7 IF-blocks

Another important control structure in Fortran is theIF statement which allows a block of statements to
be executed conditionally, or allows a choice to be made between different courses of action.

One obvious defect of the functionAREA3is that has no protection against incorrect input. Many
sets of three real numbers could not possibly form the sides of a triangle, for example 1.0, 2.0, and 7.0.
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A little analysis shows that in all such impossible cases the argument of the square root function will be
negative, which is illegal. Fortran systems should detect errors like this at run-time but will vary in their
response. Even so, a message like “negative argument for square-root” may not be enough to suggest
to the user what is wrong. The next version of the function is slightly more user-friendly; unfortunately
because one cannot use a WRITE statement inside a function which is itself being used in a WRITE
statement, the error message has to come from a STOP statement.

REAL FUNCTION AREA3(A, B, C)
*Computes the area of a triangle from lengths of its sides.
*If arguments are invalid issues error message and returns zero.

REAL A, B, C
S = (A + B + C)/2.0
FACTOR = S * (S-A) * (S-B) * (S-C)
IF(FACTOR .LE. 0.0) THEN

STOP ’Impossible triangle’
ELSE

AREA3 = SQRT(FACTOR)
END IF
END

The IF statement works with theELSE andEND IF statements to enclose two blocks of code. The
statements in the first block are only executed if the expression in theIF statement is true, those in the
second block only if it is false. The statements in each block are indented for visibility, but this is, again,
just a sensible programming practice.

With this modification, the value ofFACTORis tested and if it is negative or zero then an error
message is produced;AREA3 is also set to an impossible value (zero) to flag the mistake. Note that
the form “.LE. ” is used because the less-than-or-equals character, “<”, is not present in the Fortran
character set. IfFACTORis positive the calculation proceeds as before.

2.8 Arrays

Fortran has good facilities for handling arrays. They can have up to seven dimensions. The program
STATS reads a set of real numbers from a data file and puts them into a one-dimensional array. It then
computes their mean and standard deviation. Given an array of valuesx1, x2, x3, ...xN , the mean M and
standard deviation S are given by:

M =
∑

xi

N

S2 =
(
∑

(xi −M)2)
(N − 1)

To simplify this program, it will be assumed that the first number in the file is an integer which tells
the program how many real data points follow.

PROGRAM STATS
CHARACTER FNAME*50
REAL X(1000)
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WRITE(UNIT=*, FMT=*) ’Enter data file name:’
READ(UNIT=*, FMT=’(A)’) FNAME
OPEN(UNIT=1, FILE=FNAME, STATUS=’OLD’)

*Read number of data points NPTS
READ(UNIT=1, FMT=*) NPTS
WRITE(UNIT=*, FMT=*) NPTS, ’ data points’
IF(NPTS .GT. 1000) STOP ’Too many data points’
READ(UNIT=1, FMT=*) (X(I), I = 1,NPTS)
CALL MEANSD(X, NPTS, AVG, SD)
WRITE(UNIT=*, FMT=*) ’Mean =’, AVG, ’ Std Deviation =’, SD
END

SUBROUTINE MEANSD(X, NPTS, AVG, SD)
INTEGER NPTS
REAL X(NPTS), AVG, SD
SUM = 0.0
DO 15, I = 1,NPTS

SUM = SUM + X(I)
15 CONTINUE

AVG = SUM / NPTS
SUMSQ = 0.0
DO 25, I = 1,NPTS

SUMSQ = SUMSQ + (X(I) - AVG)**2
25 CONTINUE

SD = SQRT(SUMSQ /(NPTS-1))
END

NOTE: the original form of the routine MEANSD produced the wrong result for the standard
deviation; thanks to Robert Williams for pointing this out .

This program has several new statement forms.

TheCHARACTERstatement declares that the variableFNAMEis to hold a string of 50 characters: this
should be long enough for the file-names used by most operating systems.

TheREALstatement declares an array X with 1000 elements numbered fromX(1) to X(1000) .

TheREADstatement uses a format itemA which is needed to read in a character string: A originally
stood for “alpha-numeric”.

TheOPENstatement then assigns I/O unit number one (any small integer could have been used) to
the file. This unit number is needed in subsequent input/output statements. The itemSTATUS=’OLD’
is used to specify that the file already exists.

The IF statement is a special form which can replace an IF-block where it would only contain one
statement: its effect is to stop the program running if the array would not be large enough.

TheREADstatement which follows it has a special form known as an implied-DO-loop: this reads all
the numbers from the file in to successive elements of the arrayX in one operation.

The CALL statement corresponds to theSUBROUTINEstatement in the same way that a function
reference corresponded to aFUNCTIONstatement. The difference is that the argumentsX andNPTS
transfer information into the subroutine, whereasAVGandSDreturn information from it. The direction
of transfer is determined only by the way the dummy arguments are used within the subroutine. An
argument can be used to pass information in either direction, or both.
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The INTEGERstatement is, as before, not really essential but it is good practice to indicate clearly
the data type of every procedure argument.

The REALstatement declares thatX is an array but uses a special option available only to dummy
arguments: it uses another argument,NPTS, to specify its size and makes it an adjustable array. Normally
in Fortran array bounds must be specified by constants, but the rules are relaxed for arrays passed into
procedures because the actual storage space is already allocated in the calling program unit; theREAL
statement here merely specifies how many of the 1000 elements already allocated are actually to be used
within the subroutine.

The rest of the subroutine uses a loop to accumulate the sum of the elements in SUM, and the sum
of their squares in SUMSQ. It then computes the mean and standard deviation using the usual formulae,
and returns these values to the main program, where they are printed out.

3 Fortran in Practice

This section describes the steps required to turn a Fortran program from a piece of text into executable
form. The main operation is that of translating the original Fortran source code into the appropriate
machine code. On a typical Fortran system this is carried out in two separate stages. This section
explains how this works in more detail.

These descriptions differ from those in the rest of the book in two ways. Firstly, it is not essential
to understand how a Fortran system works in order to use it, just as you do not have to know how an
internal combustion engine works in order to drive a car. But, in both cases, those who have some
basic understanding of the way in which the machine works find it easier to get the best results. This is
especially true when things start to go wrong – and most people find that things go wrong all too easily
when they start to use a new programming language.

Secondly the contents of this section are much more system-dependent than all the others in the book.
The Fortran Standard only specifies what a Fortran program should do when it is executed, it has nothing
directly to say about the translation process. In practice, however, nearly all Fortran systems work in
much the same way, so there should not be too many differences between the “typical” system described
here and the one that you are actually using. Regrettably the underlying similarities are sometimes
obscured by differences in the terminology that different manufacturers use.

3.1 The Fortran System

The two main ways of translating a program into machine code are to use an interpreter or a compiler.

An interpreter is a program which stays in control all the while the program is running. It translates
the source code into machine code one line at a time and then executes that line immediately. It then
goes on to translate the next, and so on. If an error occurs it is usually possible to correct the mistake and
continue running the program from the point at which it left off. This can speed up program development
considerably. The main snag is that all non-trivial programs involve forms of repetition, such as loops or
procedure calls. In all these cases the same lines of source code are translated into machine code over
and over again. Some interpreters are clever enough to avoid doing all the work again but the overhead
cannot be eliminated entirely.

The compiler works in an entirely different way. It is an independent program which translates the
entire source code into machine code at once. The machine code is usually saved on a file, often called
an executable image, which can then be run whenever it is needed. Because each statement is only
translated once, but can be executed as many times as you like, the time take by the translation process
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is less important. Many systems provide what is called an optimising compiler which takes even more
trouble and generates highly efficient machine code; optimised code will try to make the best possible
use of fast internal registers and the compiler will analyse the source program in blocks rather than one
line at a time. As a result, compiled programs usually run an order of magnitude faster than interpreted
ones. The main disadvantage is that if the program fails in any way, it is necessary to edit the source
code and recompile the whole thing before starting again from the beginning. The error messages from
a compiled program may also be less informative than those from an interpreter because the original
symbolic names and line numbers may not be retained by the compiler.

Interpreters, being more “user-friendly”, are especially suitable for highly interactive use and for
running small programs produced by beginners. Thus languages like APL, Basic, and Logo are usually
handled by an interpreter. Fortran, on the other hand, is often used for jobs which consume significant
amounts of computer time: in some applications, such as weather forecasting, the results would simply
be of no use if they were produced more slowly. The speed advantage of compilers is therefore of great
importance and in practice almost all Fortran systems use a compiler to carry out the translation.

Separate Compilation

The principal disadvantage of a compiler is the necessity of re-compiling the whole program after making
any alteration to it, no matter how small. Fortran has partly overcome this limitation by allowing program
units to be compiled separately; these compiled units or modules are linked together afterwards into an
executable program.

A Fortran compiler turns the source code into what is usually called object code: this contains the
appropriate machine-code instructions but with relative memory addresses rather than absolute ones. All
the program units can be compiled together, or each one can be compiled separately. Either way a set of
object modules is produced, one from each program unit. The second stage, which joins all the object
modules together, is usually known as linking, but other terms such as loading, link-editing, and task-
building are also in use. The job of the linker is to collect up all these object modules, allocate absolute
addresses to each one, and produce a complete executable program, also called an executable image.

The advantage of this two-stage system is that if changes are made to just one program unit then only
that one has to be re-compiled. It is, of course, necessary to re-link the whole program. The operations
which the linker performs are relatively simple so that linkers ought to be fast. Unfortunately this is not
always so, and on some systems it can take longer to link a small program than to compile it.

3.2 Creating the Source Code

The first step after writing a program is to enter it into the computer: these files are known as the source
code. Fortran systems do not usually come with an editor of their own: the source files can be generated
using any convenient text editor or word processor.

Many text editors have options which ease the drudgery of entering Fortran statements. On some you
can define a single key-stroke to skip directly to the start of the statement field at column 7 (but if the
source files are to conform to the standard this should work by inserting a suitable number of spaces and
not a tab character). An even more useful feature is a warning when you cross the right-margin of the
statement field at column 72. Most text editors make it easy to delete and insert whole words, where a
word is anything delimited by spaces. It helps with later editing, therefore, to put spaces between items
in Fortran statements. This also makes the program more readable.

Most programs will consist of several program units: these may go on separate files, all on one file,
or any combination. On most systems it is not necessary for the main program unit to come first. When
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first keying in the program it may seem simpler to put the whole program on one file, but during program
development it is usually more convenient to have each program unit on a separate file so that they can
be edited and compiled independently. It minimises confusion if each source file has the same name as
the (first) program unit that it contains.

INCLUDEStatements

Many systems provide a pseudo-statement calledINCLUDE (or sometimesINSERT) which inserts
the entire contents of a separate text file into the source code in place of theINCLUDE statement.
This feature can be particularly useful when the same set of statements, usually specification state-
ments, has to be used in several different program units. Such is often the case when defining a set
of constants usingPARAMETERstatements, or when declaring common blocks with a set ofCOMMON
statements.INCLUDEstatements reduce the key-punching effort and the risk of error. Although non-
standard,INCLUDEstatements do not seriously compromise portability because they merely manipulate
the source files and do not alter the source code which the compiler translates.

3.3 Compiling

The main function of a Fortran compiler is to read a set of source files and write the corresponding set of
object modules to the object file.

Most compilers have a number of switches or options which can be set to control how the compiler
works and what additional output it produces. Some of the more useful ones, found on many systems,
are described below.

• Almost all compilers can produce a listing file: a text file containing a copy of the source code,
with the lines numbered, and with error messages and other useful information attached. A list
of all the symbolic names and labels used in the program unit is often provided: this should be
checked for unexpected entries as they may be the result of spelling mistakes.

• An even more useful addition to the listing is a cross-reference table: this lists every place that
each symbolic name has been used. Good compilers indicate which names have only been used
once as these often indicate a programming mistake.

• Another widely available option is the detection of syntax which does not conform to the Fortran
Standard: this helps to ensure program portability.

• Often it is possible to choose the optimization level. During program development a low level of
optimization should be selected if this makes the compiler run faster; it may improve the error
detection. Highly optimised machine code may execute faster but if the source code lines are
rearranged error messages may be less helpful.

• Many systems allow additional code to be included which check for errors at run-time. Errors such
as over-running the bounds of an array or a character string, or arithmetic over-flow can usually
be trapped. Such errors are not uncommon, so this assistance is very valuable. Some program-
ming manuals suggest that these options should only be selected during program development and
switched-off thereafter in the interests of speed. This is rather like wearing seat-belts in the car
only while you are learning to drive and ignoring them as soon as you are allowed out on the
motorway. Run-time checks do not usually reduce the execution speed noticeably.
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3.4 Linking

At its simplest, the linker just takes the set of object modules produced by the compiler and links them
all together into an executable image. One of these modules must correspond to the main program unit,
the other modules will correspond to procedures and to block data subprogram units.

It often happens that a number of different programs require some of the same computations to be
carried out. If these calculations can be turned into procedures and linked into each program it can
save a great deal of programming effort, especially in the long run. This “building block” approach is
particularly beneficial for large programs. Many organisations gradually build up collections of proce-
dures which become an important software resource. Procedures collected in this way tend to be fairly
reliable and free from bugs, if only because they have been extensively tested and de-bugged in earlier
applications.

Object Libraries

It obviously saves on compilation time if these commonly-used procedures can be kept in compiled form
as object modules. Almost all operating systems allow a collection of object modules to be stored in an
object library (sometimes known as a pre-compiled or relocatable-code library). This is a file containing
a collection of object modules together with an index which allows them to be extracted easily. Object
libraries are not only more efficient but also easier to use as there is only one file-name to specify to the
linker. The linker can then work out for itself which modules are needed to satisfy the variousCALL
statements and function references encountered in the preceding object modules. Object libraries also
simplify the management of a procedure collection and may reduce the amount of disc space needed.
There are usually simple ways of listing the contents of an object library, deleting modules from it, and
replacing modules with new versions.

All Fortran systems come with a system library which contains the object modules for various intrinsic
functions such asSIN, COS , andSQRT. This is automatically scanned by the linker and does not have
to be specified explicitly.

Software is often available commercially in the form of procedure libraries containing modules which
may be linked into any Fortran program. Those commonly used cover fields such as statistics, signal
processing, graphics, and numerical analysis.

Linker Options

The order of the object modules supplied to the linker does not usually matter although some systems
require the main program to be specified first. The order in which the library files are searched may be
important, however, so that some care has to be exercised when several different libraries are in use at
the same time.

The principal output of the linker is a single file usually called the executable image. Most linkers can
also produce a storage map showing the location of the various modules in memory. Sometimes other
information is provided such as symbol tables which may be useful in debugging the program.

3.5 Program Development

The program development process consists of a number of stages some of which may have to be repeated
several times until the end product is correct:
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1. Designing the program and writing the source-code text.

2. Keying in the text to produce a set of Fortran source files.

3. Compiling the source code to produce a set of object modules.

4. Linking the object modules and any object libraries into a complete executable image.

5. Running the executable program on some test data and checking the results.

The main parts of the process are shown in the diagram below.
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Source program
|
V

FORTRAN COMPILER --> (optional) Compiler listing
|
V

Object code
|
V

Object libraries --> LINKER --> (optional) linker map
(optional) |

V
Executable program

Handling Errors

Things can go wrong at almost every stage of the program development process for a variety of reasons,
most of them the fault of the programmer. Naturally the Fortran system cannot possibly detect all the
mistakes that it is possible for human programmers to make. Errors in the syntax of Fortran statements
can usually be detected by the compiler, which will issue error messages indicating what is wrong and,
if possible, where.

Other mistakes will only come to light at the linking stage. If, for example, you misspell the name of
a subroutine or function the compiler will not be able to detect this as it only works on one program unit
at a time, but the linker will say something like “unsatisfied external reference”. This sort of message
will sometimes appear if you misspell the name of an array since array and function references can have
the same form.

Most errors that occur at run-time are the result of programmer error, or at least failure to anticipate
some failure mode. Even things like division by zero or attempting to access an array element which is
beyond its declared bounds can be prevented by sufficiently careful programming.

There is, however, a second category of run-time error which no amount of forethought can avoid:
these nearly all involve the input/output system. Examples include trying to open a file which no longer
exists, or finding corrupted data on an input file. For this reason most input/output errors can be trapped,
using theIOSTAT= or ERR=keywords in any I/O statement. There is no way of trapping run-time errors
in any other types of statement in Standard Fortran.

But, just because a program compiles, links, and runs without apparent error, it is not safe to assume
that all bugs have been eliminated. There are some types of mistake which will simply give you the
wrong answer. The only way to become confident that a program is correct is to give it some test data,
preferably for a case where the results can be calculated independently. When a program is too elaborate
for its results to be predictable it should be split into sections which can be checked separately.

4 Program Structure and Layout

This section explains the rules for program construction and text layout. A complete Fortran program
is composed of a number of separate program units. Each of these can contain both statements and
comment lines. Statements are formed from items such as keywords and symbolic names. These in turn
consist of characters.
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4.1 The Fortran Character Set

The only characters needed to write Fortran programs, and the only ones that should be used in portable
software, are those in the Fortran character set:

the 26 upper-case letters A B C... X Y Z
the 10 digits 0 1 2 3 4 5 6 7 8 9
and 13 special characters:

+ plus - minus
* asterisk / slash

blank = equals
( left parenthesis ) right parenthesis
. decimal point , comma
’ apostrophe : colon
$ currency symbol

Although this character set is somewhat limited, it is at least universally available, which helps to make
programs portable. What suffers is program legibility: lower-case letters are absent and it is necessary
to resort to ugly constructions like.LT. and .GT. to represent operators like< and>. Some of the
special characters, such as the asterisk and parentheses, are also rather overloaded with duties.

Blanks

The blank, or space, character is ignored everywhere in Fortran statements (except within character
constants, which are enclosed in a pair of apostrophes). Although you do not need to separate items in
Fortran statements with blanks, it is good practice to include a liberal helping of them since they improve
legibility and often simplify editing. The only limitation (as explained below) is that statement lines must
not extend beyond column 72.

Currency Symbol

The currency symbol has no fixed graphic representation: it appears on most systems as the dollar “$”,
but other forms such as “£” equally valid. This variability does not matter much because the currency
symbol is not actually needed in Standard Fortran syntax.

Other Characters

Most computers have a character set which includes many other printable characters, for example lower-
case letters, square brackets, ampersands and per-cent signs. Any printable characters supported by the
machine may be used in comment lines and within character constants.

The Fortran character set does not include any carriage-control characters such as tab, carriage-return,
or form-feed, but formattedWRITEstatements can be used to produce paginated and tabulated output
files.

Fortran programs can process as data any characters supported by the local hardware. The Fortran
Standard is not based on the use of any particular character code but it requires its character comparison
functions to use the collating sequence of the American Standard Code for Information Interchange
(ASCII). Further details are given in section 7.6.
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4.2 Statements and Lines

The statement is the smallest unit of a Fortran program, corresponding to what is called an instruction or
command in some programming languages. Most types of statement start with a keyword which consists
of one (or sometimes two) English words describing the main action of that statement, for example:
READ, DO, ELSE IF , GO TO. Since blanks are ignored, compound keywords can be written either as
one word or two:ELSEIF or ELSE IF (but the latter seems easier to read).

The rules for statement layout are an unfortunate relic of punched-card days. Every statement must
start on a new line and each line is divided into three fixed fields:

• columns 1 to 5 form the label field,

• column 6 forms the continuation marker field,

• columns 7 to 72 form the statement field.

Since labels and continuation markers are only needed on a few statements, the first six columns of
most lines are left blank.

Any characters in column 73 or beyond are likely to be ignored (columns 73 to 80 were once used to
hold card sequence numbers). This invisible boundary after column 72 demands careful attention as it
can have very pernicious effects: it is possible for a statement to be truncated at the boundary but still be
syntactically correct, so that the compiler will not detect anything wrong.

Continuation Lines

Statements do not have to fit on a single line. The initial line of each statement should have a blank in
column 6, and all subsequent lines, called continuation lines, must have some character other than blank
(or the digit zero) in column 6. Up to 19 continuation lines are allowed, i.e. 20 in total. The column
layout needed with continuation lines is illustrated here:

columns
123456789...

IF(REPLY .EQ. ’Y’ .OR. REPLY .EQ. ’y’ .OR.
$ REPLY .EQ. ’T’ .OR. REPLY .EQ. ’t’) THEN

The currency symbol makes a good continuation marker since if accidentally misplaced into an adjacent
column it would be almost certain to produce an error during compilation.

TheENDstatement is an exception to the continuation rule: it may not be followed by continuation
lines and no other statement may have an initial line which just contains the letters “END”. Neither rule
causes many problems in practice.

Programs which make excessive use of continuation lines can be hard to read and to modify: it is
generally better, if possible, to divide a long statement into several shorter ones.

Comment Lines

Comments form an important part of any computer program even though they are completely ignored by
the compiler: their purpose is to help any human who has to read and understand the program (such as
the original programmer six months later).
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Comments in Fortran always occupy a separate line of text; they are marked by an asterisk in the first
column. For example:

*Calculate the atmospheric refraction at PRESS mbar.
REF = PRESS * (0.1594 + 1.96E-2 * A + 2E-5 * A**2)

*Correct for the temperature T (Celsius)
TCOR = (273.0 + T) * (1.0 + 0.505 * A + 8.45E-2 * A**2)

A comment may appear at any point in a program unit except after theENDstatement (unless another
program unit follows, in which case it will form the first line of the next unit). A completely blank line
is also allowed and is treated as a blank comment. This means that a blank line is not actually permitted
after the lastENDstatement of a program.

There is no limit to the number of consecutive comment lines which may be used; comments may also
appear in the middle of a sequence of continuation lines. To conform to the Fortran Standard, comment
lines should not be over 72 characters long, but this rule is rarely enforced.

Comments may include characters which are not in the Fortran character set. It helps to distinguish
comments from code if they are mainly written in lower-case letters (where available). It is also good
practice for comments to precede the statements they describe rather than follow them.

Some systems allow end-of-line comments, usually prefaced by an exclamation mark: this is not
permitted by the Fortran standard. For compatibility with Fortran66 comments can also be denoted by
the letter C in column 1.

Statement Labels

A label can be attached to any statement. There are three reasons for using labels:

• the end of eachDO-loop is specified by a label given in theDOstatement;

• everyFORMATstatement must have a label attached as that is howREADandWRITEstatements
refer to it;

• any executable statement may have a label attached so that control may be transferred to it, for
example by aGO TOstatement.

Example:

*Read numbers from input file until it ends, add them up.
SUM = 0.0

100 READ(UNIT=IN, FMT=200, END=9999) VALUE
200 FORMAT(F20.0)

SUM = SUM + VALUE
GO TO 100

9999 WRITE(UNIT=*, FMT=*)’SUM of values is’, SUM

Each label has the form of an unsigned integer in the range 1 to 99999. Blanks and leading zeros are
ignored. The numerical value is irrelevant and cannot be used in a calculation at all. The label must
appear in columns 1 to 5 of the initial line of the statement. In continuation lines the label field must be
blank.
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A label must be unique within a program unit but labels in different program units are quite inde-
pendent. Although any statement may be labelled, it only makes sense to attach a label to aFORMAT
statement or an executable statement, since there is no way of using a label on any other type of statement.

Statement labels are unsatisfactory because nearly all of them mark a point to which control could be
transferred from elsewhere in the program unit. This makes it much harder to understand a program with
many labelled statements. Unfortunately at present one cannot avoid using labels altogether in Fortran.
If labels are used at all they should appear in ascending order and preferably in steps of 10 or 100 to
allow for changes. Labels do not have to be right-justified in the label field.

4.3 Program Units

A complete executable program consists of one or more program units. There is always one (and only
one) main program unit: this starts with aPROGRAMstatement. There may also be any number of
subprogram units of any of the three varieties:

• subroutine subprograms: these start with aSUBROUTINEstatement

• function subprograms, also known as external functions: these start with aFUNCTIONstatement

• block data subprograms: these start with aBLOCK DATAstatement.

Subroutines and external functions are known collectively as external procedures; block data subpro-
grams are not procedures and are used only for the special purpose of initialising the contents of named
common blocks.

Every program unit must end with anENDstatement.

Procedures

Subroutines and external functions are collectively known as external procedures: they are described in
full in section 9. A procedure is a self-contained sequence of operations which can be called into action
on demand from elsewhere in the program. Fortran supplies a number of intrinsic functions such as
SIN, COS, TAN, MIN, MAX, etc. These are procedures which are automatically available when
you need to use them in expressions. External functions can be used in similar ways: there may be any
number of arguments but only one value is returned via the function name.

The subroutine is a procedure of more general form: it can have any number of input and output
arguments but it is executed only in response to an explicitCALL statement.

Procedures may call other procedures and so on, but a procedure may not call itself directly or indi-
rectly; Fortran does not support recursive procedure calls.

Most Fortran systems allow procedures to be written in other languages and linked with Fortran
modules into an executable program. If the procedure interface is similar to that of a Fortran subroutine
or function this presents no problem.

The normal way to transfer information from one program unit to another is to use the argument list
of the procedure as described in section 9, but it is also possible to use a common block: a shared area of
memory. This facility, which is less modular, is described in section 12.
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4.4 Statement Types and Order

Fortran statements are either executable or non-executable. The compiler translates executable state-
ments directly into a set of machine code instructions. Non-executable statements are mainly used to tell
the compiler about the program; they are not directly translated into machine code. TheENDstatement
is executable and so are all those in the lowest right-hand box of the table below; all other statements are
non-executable.

The general order of statements in a program unit is:

• Program unit header (PROGRAM, SUBROUTINE, FUNCTION, or BLOCK DATAstatement)

• Specification statements

• Executable statements

• ENDstatement.

The table below shows shows the complete statement ordering rules: the statements listed in each box
can be intermixed with those in boxes on the same horizontal level (thusPARAMETERstatements can
be intermixed withIMPLICIT statements) but those in boxes separated vertically must appear in the
proper order in each program unit (thus all statement functions must precede all executable statements).

PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATA
IMPLICIT

PARAMETER Type statements:
INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, CHARACTER
Other specification statements:
COMMON, DIMENSION, EQUIVALENCE,
EXTERNAL, INTRINSIC, SAVE

FORMAT Statement function statements
DATA Executable statements:

BACKSPACE, CALL, CLOSE, CONTINUE, DO,
ELSE, ELSE IF, END IF, GO TO, IF,
INQUIRE, OPEN, READ, RETURN, REWIND,
STOP, WRITE, assignment statements.

END

Execution Sequence

A program starts by executing the first executable statement of the main program unit. Execution con-
tinues sequentially unless control is transferred elsewhere: anIF or GO TOstatement, for example,
may transfer control to another part of the same program unit, whereas aCALL statement or function
reference will transfer control temporarily to a procedure.

A program continues executing until it reaches aSTOPstatement in any program unit, or theEND
statement of the main program unit, or until a fatal error occurs. When a program terminates normally
(at STOPor END) the Fortran system closes any files still open before returning control to the operating
system. But when a program is terminated prematurely files, especially output files, may be left with
incomplete or corrupted records.
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4.5 Symbolic Names

Symbolic names can be given to items such as variables, arrays, constants, functions, subroutines, and
common blocks. All symbolic names must conform to the following simple rule: the first character of
each name must be a letter, this may be followed by up to five more letters or digits. Here are some
examples of valid symbolic names:

I MATRIX VOLTS PIBY4 OLDCHI TWOX R2D2 OUTPUT

And here are some names which do not conform to the rules:

COMPLEX (too many letters)
MAXEL (underscore is not allowed)
2PI (starts with a digit)
Height (lower-case letters are not allowed).

It is best to avoid using digits in names unless the meaning is clear, because they are often misread. The
digit 1 is easily confused with the letterI , similarly 0 looks much like the letterOon many devices.

The six-character limit on the length of a symbolic name is one of the most unsatisfactory features
of Fortran: programs are much harder to understand if the names are cryptic acronyms or abbreviations,
but with only six characters there is little choice. Although many systems do not enforce the limit (and
Fortran90 allows names up to 31 characters long), at present the only way to ensure software portability is
to keep to it strictly. There is a further problem with items which have an associated data type (constants,
variables, arrays, and functions). Unless the data type is declared explicitly in a type statement, it is
determined by the initial letter of the name. This may further restrict the choice.

Scope of Symbolic Names

Symbolic names which identify common blocks and program units of all types are global in scope, i.e.
their name must be unique in the entire executable program. Names identifying all other items (variables,
arrays, constants, statement functions, intrinsic functions, and all types of dummy argument) are local
to the program unit in which they are used so that the same name may be used independently in other
program units.

To see the effect of these rules here is a simple example. Suppose your program contains a subroutine
called SUMMIT. This is a global name so it cannot be used as the name of global item (such as an
external procedure or a common block) in the same executable program. In the SUMMIT subroutine
and in any other program unit which calls it the name cannot be used for a local item such as a variable
or array. In all other program units, however, including those which call SUMMIT indirectly, the name
SUMMIT can be used freely e.g. for a constant, variable, or array.

The names of global items need to be chosen more carefully because it is harder to alter them at a
later stage; it can be difficult to avoid name clashes when writing a large program or building a library of
procedures unless program unit names are allocated systematically. It seems appropriate for procedures
to have names which are verb-like. If you find it difficult to devise sensible procedure names remember
that the English language is well stocked with three and four-letter verbs which form a good basis, for
example: DO, ASK, GET, PUT, TRY, EDIT, FORM, LIST, LOAD, SAVE, PLOT. By combining a word
like one of these with one or two additional letters it is possible to make up a whole range of procedure
names.
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Reserved Words

In most computer languages there is a long list of words which are reserved by the system and cannot be
used as symbolic names: Cobol programmers, for example, have to try to remember nearly 500 of them.
In Fortran there are no reserved words. Some Fortran keywords (for instanceDATA, END, andOPEN)
are short enough to be perfectly valid symbolic names. Although it is not against the rules to do this, it
can be somewhat confusing.

The names of the intrinsic functions (such asSQRT, MIN, CHAR) are, technically, local names
and there is nothing to prevent you using them for your own purposes, but this is not generally a good
idea either. For example, if you choose to use the nameSQRTfor a local variable you will have more
difficulty in computing square-roots in that program unit. It is even more unwise to use the name of an
intrinsic function as that of an external procedure because in this case the name has to be declared in an
EXTERNALstatement in every program unit in which it is used in this way.

4.6 PROGRAMStatement

ThePROGRAMstatement can only appear at the start of the main program unit. Its only function is to
indicate what type of program unit it is and to give it symbolic name. Although this name cannot be used
anywhere else in the program, it may be used by the Fortran system to identify error messages etc. The
general form is simply:

PROGRAMname
Wherenameis a symbolic name. This name is global in scope and may not be used elsewhere in the
main program nor as a global name in any other program unit. For compatibility with Fortran66 the
PROGRAMstatement is optional. This can have unexpected effects: if you forget use aSUBROUTINE
or FUNCTIONstatement at the start of a procedure the compiler will assume it to be a (nameless) main
program unit. Since this will normally result in two main program units, the linker is likely to detect the
mistake.

4.7 ENDStatement

The ENDstatement must appear as the last statement of every program unit. It simply consists of the
word:

END
which may not be followed by any continuation lines (or comments). TheENDstatement is executable
and may have a label attached. If anENDstatement is executed in a subprogram unit, i.e. a procedure, it
returns control to the calling unit; if anENDstatement is executed in the main program it closes any files
which are open, stops the program, and returns control to the operating system.

5 Constants, Variables, and Arrays

This section deals with the data-storage elements of Fortran: constants, variables, and arrays. These
all possess an important property called data type. The data type of an item determines what sort of
information it holds and the operations that can be performed on it.
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5.1 Data Types

All the information processed by a digital computer is held internally in the form of binary digits or bits.
Suitable collections of bits can be used to represent many different types of data including numbers and
strings of characters. It is not necessary to know how the information is represented internally in order to
write Fortran programs, only that there is a different representation for each type of data. The data type
of each item also determines what operations can be carried out on it: thus arithmetic operations can be
carried out on numbers, whereas character strings can be split up or joined together. The data type of
each item is fixed when the program is written.

Fortran, with its emphasis on numerical operations, has four data types just for numbers. These are
collectively known as the arithmetic data types. Arithmetic expressions can include mixtures of data
types and, in most cases, automatic type conversions are provided. In other circumstances, however,
especially in procedure calls, there is no provision for automatic type conversion and it is essential for
data types to match exactly.

The range and precision of the arithmetic data types are not specified by the Standard: typical values
are indicated below, but the only way to be sure is to check the manuals provided with your own Fortran
system.

Several intrinsic functions are available to convert from one data type to another. Conversion from
character strings to numbers and vice-versa can be complicated; these are best carried out with the
internal fileREADandWRITEstatements (see section 10.3).

There are, as yet, no user-defined or structured data types in Fortran.

Standard Data Types

The table below summarises the properties of the six data types provided in Standard Fortran:

Data type Characteristics

Integer Whole numbers stored exactly.
Real Numbers, which may have fractional parts, stored using a floating-point

representation with limited precision.
Double Precision Similar to real but with greater precision.
Complex Complex numbers: stored as an ordered pair of real numbers.
Logical A Boolean value, i.e. one which is either true or false.
Character A string of characters of fixed length.

The first four types (integer, real, double precision, and complex) all hold numerical information and
are collectively known as arithmetic data types.

Integer Type

The integer data type can only represent whole numbers but they are stored exactly in all circumstances.
Integers are often used to count discrete objects such as elements of an array, characters in a string, or
iterations of a loop.

The range of numbers covered by the integer type is system-dependent. The majority of computers
use 32 bits for their integer arithmetic (1 bit for the sign and 31 for the magnitude) giving a number range
of −2, 147, 483, 648 to +2, 147, 483, 647. Some systems have an even larger integer range but a few
very small systems only allow 16-bit integer arithmetic so that their integer range is only−32, 768 to
+32, 767.
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Real Type

Most scientific applications use the real data type more than anything else. Real values are stored inter-
nally using a floating-point representation which gives a larger range than the integer type but the values
are not, in general, stored exactly. Both the range and precision are machine dependent.

In practice most machines use at least 32 bits to store real numbers. Many systems now use the IEEE
Standard representation: for 32-bit numbers this gives a precision of just over 7 decimal digits and allows
a number range from around10−38 to just over10+38. This can be something of a limitation because
there are many types of calculation, especially in physics and astronomy, which lead to numbers in excess
of 1040. Some computers designed expressly for scientific work, sometimes called “super-computers”,
allocate 64 bits for real numbers so that the numerical precision is much larger; the range is often larger
as well. On such machines it is rarely necessary to use the double precision type.

Double Precision Type

Double precision is an alternative floating-point type. The Fortran Standard only specifies that it should
have greater precision than the real type but in practice, since the double precision storage unit is twice
the size, it is safe to assume that the precision is at least doubled. The number range may, however, be
the same as that for real type.

Although double precision values occupy twice as much memory as real (or integer) values, compu-
tations on them do not necessarily take twice as long.

Complex Type

The complex data type stores two real values as a single entity. There is no double precision complex
type in Standard Fortran.

Complex numbers arise naturally when extracting the roots of negative numbers and are used in many
branches of mathematics, physics, and engineering. A complex number is often represented as(A+ iB),
whereA andB are the real and imaginary parts respectively andi2 = −1. Electrical engineers, having
used the letteri to represent current, use the notation(A + jB) instead.

Although the rules for manipulating complex numbers are straight-forward, it is convenient to have
the Fortran system to do the work. It is usually more efficient as well, because the computer can use
its internal registers to store the intermediate products in complex arithmetic. Exponentiation and the
four regular arithmetic operators can be used on complex values, and various intrinsic functions are also
provided such as square-root, logarithms, and the trigonometric functions.

Logical Type

The logical data type is mainly used in conjunction withIF statements which select a course of action
according to whether some condition is true or false. A logical variable (or array element) may be used
to store such a condition value for future use. Logical variables and arrays are also useful when dealing
with two-valued data such as whether a person is male or female, a file open or closed, power on or off,
etc.

Some programmers seem reluctant to use logical variables and arrays because they feel that it must be
inefficient to use an entire computer word of perhaps 32 bits to store just one bit of information. In fact
the extra code needed to implement a more efficient data packing scheme usually wastes more memory
than the logical variables would have occupied.
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Character Type

The character type is unique in that each character item has a length defined for it: this is the number
of characters that it holds. In general the length is fixed when the item is declared and cannot be al-
tered during execution. The only exception to this is for dummy arguments of procedures: here it is
possible for the dummy argument to acquire the length of the corresponding actual argument. Using this
facility, general-purpose procedures can be written to operate on character strings irrespective of their
length. In addition, the rules for character assignment take care of mismatched lengths by truncating or
padding with blanks on the right as necessary. This means that the Fortran character type has many of
the properties of a genuine variable-length character-handling system.

The maximum length of a character item is system-dependent: it is safe to assume that all systems
will allow strings of up to 255 characters, a length limit of 32767 (or even more) is quite common. The
minimum length of a character item is one character; empty or null strings are not permitted.

Storage Units

Although the Fortran Standard does not specify the absolute amount of memory to be allocated to each
data type, it does specify the relative amounts. This is not important very often, only when constructing
unformatted direct-access records or when usingCOMMONandEQUIVALENCEstatements. The rules
are as follows:

Data types Storage units
integer, real, logical 1numericalstorage unit
complex, double precision 2numericalstorage units
character*(N) Ncharacterstorage units

In the case of an array the number of storage units must be multiplied by the total number of elements
in the array.

The relationship between the numeric and character storage units is deliberately undefined because it
is entirely system-dependent.

Guidelines

It is usually fairly clear which data type to choose for each item in a program, though there are some
borderline cases among the various arithmetic data types.

When processing data which are inherently integers, such as the number of seeds which germinate
in each plot, or the number of photons detected in each time interval, it is not always clear whether to
use integer or real arrays to store them. They both use the same memory space but on some machines
additions and subtractions are faster on integers than on floating-point numbers. In practice, however,
any savings can be swallowed up in the data type conversions that are usually necessary in subsequent
processing. The main snag with integers is the limited range; on some machines integer overflow is not
detected whereas floating-point overflows nearly always produce error messages.

If your machine stores its real variables in 32-bit words then the precision of around 1 in107 is likely
to be inadequate in some applications. This imprecision is equivalent to an error of several pence in a
million pounds, or around ten milliseconds in a day. If errors of this order are significant you should
consider using the double precision type instead. This will normally reduce the errors by at least another
factor of107. Mixing data types increases the risks of making mistakes and it is often simpler and safer
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to use the double precision type instead of real throughout the program, even though this may use slightly
more memory and processor time.

Although automatic type conversions are provided for the arithmetic types in expressions, in other
cases such as procedure calls it is essential for each actual argument to have the same data type as the
corresponding dummy argument. Since program units are compiled independently, it is difficult for
either the compiler or the linker to detect type mismatches in calls to external procedures.

Non-standard Data Types

Although Standard Fortran only provides the above six data types, many systems provide additional ones.
You may come across data type names such as:LOGICAL*1 , INTEGER*2, REAL*8, COMPLEX*16,
etc. The number after the asterisk indicates the number of bytes of storage used for each datum (a
byte being a group of 8 bits). This notation has a certain logic but is totally non-standard. The use of a
term likeREAL*8 when it is simply a synonym forDOUBLE PRECISIONseems particularly pointless.
There are, of course, circumstances when types such asCOMPLEX*16are necessary but the price to be
paid is the loss of portability.

5.2 Constants

A constant has a value which is fixed when the program is written. The data type of every constant is
evident from its form. Arithmetic constants always use the decimal number base: Standard Fortran does
not support other number bases such as octal or hexadecimal.

Although arithmetic constants may in general have a leading sign (plus or minus) there are some
circumstances in Fortran when an unsigned constant is required. If the constant is zero then any sign is
ignored.

Integer Constants

The general form of an integer constant is a sign (plus or minus) followed by a string of one or more
digits. All other characters (except blanks) are prohibited. If the number is positive the plus sign is
optional. Here are some examples of valid integer constants:

-100 42 0 +1048576
It is easier to read a large number if its digits are marked off in groups of three: traditionally the comma
(or in some countries the dot) is used for this purpose. The blank can be used in the same way in Fortran
programs (but not in data files):

-1 000 000 000
Note that this number, although conforming to the rules of Fortran, may be too large in magnitude to be
stored as an integer on some systems.

Real Constants

A real constant must contain a decimal point or an exponent (or both) to distinguish it from one of integer
type. The letter “E” is used in Fortran to represent “times 10 to the power of”. For example, the constant
1.234× 10−5 is written as “1.234E-5”.

The most general form of a real constant is:
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sign digits . digits E sign digits
–integer-part– –decimal-part– –exponent–

—basic-real-constant— —exponent-section—

Both signs are optional; a plus sign is assumed if no sign is present. Leading zeros in the integer-part
and in the exponent are ignored. Either the integer part or the decimal part may be omitted if it is zero
but one or the other must be present. If the value of the exponent is zero the entire exponent section may
be omitted provided a decimal point is present in the number.

There is no harm in giving more decimal digits in a real (or double precision) constant than the
computer can make use of: the value will be correctly rounded by the computer and the extra decimal
places ignored.

Here are a few examples of valid real constants:
.5 -10. 1E3 +123.456E4 .000001

Dangling decimal points, though permitted, are easily overlooked, and it is conventional to standardize
constants in exponential notation so that there is only one digit before the decimal point. Using this
convention, these values would look like this:

0.5 -10.0 1000.0 1.23456E6 1.0E-6

Double Precision Constants

A double precision constant has a similar form to a real constant but it must contain an exponent but
using the letter “D” in place of “E” even if the exponent is zero. Some examples of double precision
constants are:

3.14159265358987D0 1.0D-12 -3.652564D+02

Complex Constants

A complex constant has the form of two real or integer constants separated by a comma and enclosed in
a pair of parentheses. The first number is the real component and the second the imaginary component.
Some examples of valid complex constants are:

(3.14,-5.67) (+1E5,0.125) (0,0) (-0.999,2.718E15)

Logical Constants

There are only two possible logical constants, and they are expressed as:.TRUE. and.FALSE. The
dots at each end are needed to distinguish these special forms from the words TRUE and FALSE, which
could be used as symbolic names.

Character Constants

A character constant consists of a string of characters enclosed in a pair of apostrophes which act as
quotation marks. Within the quoted string any characters available in the character set of the machine are
permitted; the blank (or space) character is significant within character constants and counts as a single
character just like any other. Examples of valid character constants are:

’X’
’$40 + 15%’
’This is a constant including spaces’
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The apostrophe character can be included in a character constant by representing it as two successive
apostrophes (with no intervening blanks). This pair of apostrophes only counts as a single character for
the purposes of computing the length of the string. For example:’DON’’T’ is a constant of length 5.

5.3 Specifying Data Type

The preceding rules ensure that the data type of an literal constant is completely determined by its form.
Similarly the data type of an expression depends on the operands and operators involved. The intrinsic
functions are also a special case, since their properties, including their data types, are known to the
compiler. All other typed objects in a Fortran program are referred to by symbolic names. The rules
given here apply to all of these named objects: variables, arrays, named constants, statement functions,
and external functions.

In many programming languages, especially those in the Algol family, the data type of almost every
item in the program has to be specified explicitly. Many programmers regard it as a chore to have to
provide all these type specifications, although their presence does make it rather easier for the compiler
to detect mistakes.

In Fortran you can specify data types explicitly in a similar way by using type statements, but Fortran
also makes life easier by having certain default types. The data type of any object which has not been
declared in a type statement depends on the first letter of its name. The default rules are:

First letter of the name Implicit type
A to H REAL
I to N INTEGER
O to Z REAL

Most programs make extensive use of integer and real objects, so these default values reduce the
number of type statements that are required, provided suitable initial letters are chosen for the symbolic
names.

The first-letter rule can also be changed throughout a program unit by using anIMPLICIT statement,
described below.

Type Statements

There are six different type statements, one for each data type. In their simplest form they just consist of
the appropriate data-type keyword followed by a list of symbolic names. For example:

INTEGER AGE, GRADE
LOGICAL SUPER
REAL RATE, HOURS, PAY, TAX, INSURE

In this example the first four items declared to be real would have had that type anyway had the default
rules been left to operate. Confirmatory type specification does no harm.

There is no limit to the number of type statements that can be used but a name must not have its
type specified explicitly more than once in a program unit. Type statements must precede all executable
statements in the unit; it is good practice, though not essential, for them to precede other specification
statements referring to the same name. Type statements can be used in a subprogram to specify the types
of the dummy arguments and, in an external function, the type of the function as well. Type statements
by themselves have no effect on intrinsic function names but it is not a good idea to use them in this way.
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TheCHARACTERstatement is slightly different from the others because it also specifies the length of
each character item, i.e. the number of characters it holds. The length can be given separately for each
item, thus:

CHARACTER NAME*15, STREET*30, TOWN*20, PCODE*7
Alternatively, if several items are to have the same length, a default length for the statement can be given
at the beginning:

CHARACTER*20 STAR, GALAXY, COMET*4, PLANET
This declares the nameCOMETto have a length of 4 characters, whereasSTAR, GALAXY, andPLANET
are all 20 characters long. If the length is not specified at all it defaults to one. The length can also be
specified by means of a named integer constant or an integer constant expression enclosed in parentheses.
For example:

PARAMETER (NEXT=15, LAST=80)
CHARACTER TEXT*(NEXT+LAST)

Note that the length of a character item is fixed at compilation time. The special form:
CHARACTER NAME*(*)

is permitted in two cases: for named constants the length of the literal constant in thePARAMETER
statement is used (section 5.4); for dummy arguments of procedures the length of the associated actual
argument is used (section 9.5). Type statements can also be used to declare the dimensions of arrays:
this is described in section 5.6.

IMPLICIT Statement

The IMPLICIT statement can be used to change the first-letter default rule throughout a program unit.
For example:

IMPLICIT DOUBLE PRECISION (D,X-Z), INTEGER (N-P)
would mean that all names starting with the letters D,X,Y, or Z would (unless declared otherwise in type
statements) have the type double precision. Similarly the letters I through P, instead of just I through N,
will imply integer type. The other letters (A-C,E-H, and Q-W) will still imply real type.

IMPLICIT can be used with character type to specify a default length as well, for example:
IMPLICIT CHARACTER*100 (C,Z), CHARACTER*4 (S)

But this is not usually of much practical value. As with type statements, the default character length is
one.

More than oneIMPLICIT statement can be used in a program unit but the same letter must not
have its implied type specified more than once. The usual Fortran implied-type rules apply to all initial
letters not listed in anyIMPLICIT statements. The list of letters given after each type must appear
in alphabetical order.IMPLICIT statements normally precede all other specification statements in a
program. There is one exception to this:PARAMETERstatements may precede them provided that the
constants named in them are not affected by theIMPLICIT statement. Note that dummy arguments and
function names may be affected by a subsequentIMPLICIT statement.IMPLICIT statements have no
effect on intrinsic function names.

Guidelines

There are two diametrically opposed schools of thought on type specification. The first holds that all
names should have their types specified explicitly. This certainly helps programmers to avoid mistakes,
because they have to think more carefully about each item. It also helps the compiler to diagnose errors
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more easily, especially if the it knows that all names are going to be declared in advance. Some Fortran
compilers allow a statement of the form “IMPLICIT NONE” which makes all names typeless by default
and so requiring every name to be explicitly typed. Others have a compile-time switch with the same
effect. If yours does not you may be able to produce a similar effect by using something like:

IMPLICIT CHARACTER*1000000 (A-Z)
near the beginning of each program unit which is likely to cause an error for anything not explicitly typed.
One disadvantage of the practice of declaring all names in advance is that the program may become so
cluttered with specification statements that it may obscure its structure and algorithm.

The alternative way of working is to make maximum use of implicit types to reduce the number
of statements. This means, of course, that the first letter of each name has to be chosen to suit the
type, leaving no more than five to be chosen freely: this makes it harder than ever to devise meaningful
symbolic names. As a result, Fortran programs often include names likeRIMAGEor ISIZE or KOUNT.
Clearly type statements are still needed for character type because it is usually necessary to use items of
a number of different lengths.

Experience suggests that either system can be satisfactory provided it is used consistently. However
the wholesale reassignment of initial letters withIMPLICIT statements usually increases the chance of
making a mistake.IMPLICIT , if used at all, should only reassign one or two rarely-used letters to the
less common data types, for example:

IMPLICIT DOUBLE PRECISION (Z), LOGICAL (Q),
COMPLEX (X)

It is also prudent to use an identicalIMPLICIT statement in each program unit, otherwise type mis-
matches are more likely to be made in procedure calls.

5.4 Named Constants

ThePARAMETERstatement can be used to give a symbolic name to any constant. This can be useful in
several rather different circumstances.

With constants of nature (such asπ) and physical conversion factors (like the number of pounds in a
kilogram) it can save typing effort and reduce the risk of error if the actual number is only given once in
the program and the name used everywhere else:

REAL PI, TWOPI, HALFPI, RTOD
PARAMETER (PI = 3.14159265, TWOPI = 2.0 * PI)
PARAMETER (HALFPI = PI / 2.0, RTOD = 180.0 / PI)

The namesPI, TWOPI, etc. can then be used in place of the literal constants elsewhere in the program
unit. It is much better to use named constants than variables in such cases as they are given better
protection against inadvertent corruption: constants are often protected by hardware. The use of symbolic
names rather than numbers can also make the program a little more readable: it is probably harder to
work out the significance of a number like 1.570796325 than to deduce the meaning ofHALFPI .

Another important application of named constants is for items which are not permanent constants but
parameters of a program, i.e. items fixed for the present but subject to alteration at some later date. Named
constants are often used to specify array bounds, character-string lengths, and so on. For example:

INTEGER MAXR, MAXC, NPTS
PARAMETER (MAXR = 100, MAXC = 500, NPTS = MAXR*MAXC)
REAL MATRIX(MAXR,MAXC), COLUMN(MAXR), ROW(MAXC)
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The constants such asMAXRand MAXCcan also be used in the executable part of the program, for
instance to check that the array subscripts are in range:

IF(NCOL .GT. MAXC .OR. NROW .GT. MAXR) THEN
STOP ’Matrix is too small’

ELSE
MATRIX(NROW,NCOL) = ROW(NCOL)

END IF

If, at some point, the matrix turns out to be too small for your needs then you only have to alter this one
PARAMETERstatement: everything else will change automatically when the program is recompiled.

The rules for character assignment apply toPARAMETERstatements: see section 7.4. In addition a
special length specification of*(*) is permitted which means that the length of item is set to that of the
literal constant. The type specification must precede thePARAMETERstatement.

CHARACTER*(*) LETTER, DIGIT, ALPNUM
PARAMETER (LETTER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

$ DIGIT = ’0123456789’, ALPNUM = LETTER // DIGIT)
CHARACTER WARN*(*)
PARAMETER (WARN = ’This matrix is nearly singular’)

The constant ALPNUM will be 36 characters long and contain all the alpha-numeric characters (letters
and digits).

Named logical constants also exist, but useful applications for them are somewhat harder to find:

PARAMETER (NX = 100, NY = 200, NZ = 300, NTOT = NX*NY*NZ)
LOGICAL LARGE
PARAMETER (LARGE = (NTOT .GT. 1000000) .OR. (NZ .GT. 1000))

PARAMETERStatement

The general form of thePARAMETERstatement is:
PARAMETER (cname = cexp, cname = cexp,... )

where eachcnameis a symbolic name which becomes the name of a constant, and eachcexpis a constant
expression of a suitable data type.

The terms in a constant expression can only be literal constants or named constants defined earlier
in the same program unit. Variables, array elements, and function references are not permitted at all.
Otherwise the usual rules for expressions apply: parentheses can be used around sub-expressions, and
the arithmetic types can be intermixed. There is one restriction on exponentiation: it can only be used
to raise a number to an integer power. The normal rules for assignment statements apply: for arithmetic
types suitable conversions will be applied if necessary; character strings will be truncated or padded to
the required length. Note that substring references are not permitted in character constant expressions.

PARAMETERstatements are specification statements and may precede or follow type statements. But
any type (orIMPLICIT ) statement which affects the data type or length of a named constant must pre-
cede it. Subject to these rules,PARAMETERstatements are permitted to precedeIMPLICIT statements.
This makes it possible for a named constant to set the default length for the character type for certain
ranges of initial letters. For example:
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PROGRAM CLEVER
PARAMETER (LENCD = 40, LENE = 2 * LENCD)
IMPLICIT CHARACTER*(LENCD)(C-D), CHARACTER*(LENE)(E)
PARAMETER (DEMO = ’This is exactly 40 chars long’)

Once defined, a named constant can be used in any expression, including a dimension-bound expression,
or in a DATAstatement. A named constant cannot be used just as part of another constant (for exam-
ple one component of a complex constant) and named constants are not permitted at all within format
specifications.

Guidelines

One of the limitations of Standard Fortran at present is that there is no way of allocating memory dynam-
ically. One of the best ways around this is to use named constants to specify array bounds; this makes it
much easier to alter programs to suit new requirements.

Names should also be given to all mathematical and physical constants that your programs require.
If the same constants are needed in several program units then it may be sensible to compose a suitable
set ofPARAMETERstatements for all of them and bring them in where ever necessary usingINCLUDE
statements.

If you define double precision constants in aPARAMETERstatement do not forget that each literal
constant value must include an exponent using the letter D.

There are no constant arrays in Fortran: the only way to overcome this limitation is to declare an
ordinary array in a type statement and initialise its elements with aDATAstatement (described in section
11).

5.5 Variables

A variable is simply a named memory location with a fixed data type. As explained earlier, variables do
not have to be declared in advance if the data type implied by the first letter of the name is appropriate.
Otherwise a type statement is required.

At the start of execution the value of each variable is undefined unless a suitableDATAstatement
appears in the program unit (see section 11). Undefined values must not be used in expressions. Local
variables in procedures do not necessarily retain their values from one invocation of the procedure to
another unless a suitableSAVEstatement is provided (section 9.11).

5.6 Arrays

An array is a group of memory locations given a single name. The elements of the array all have the
same data type.

In mathematics the elements of an array a would be denoted by a1, a2, a3, and so on. In Fortran a
particular array element is identified by providing a subscript expression in parentheses after the array
name: A(1), A(2), A(3), etc. Subscripts must have integer type but they may be specified by expressions
of arbitrary complexity, including function calls.

An array element can be used in the same way as a variable in almost all executable statements. Array
elements are most often used within loops: typically an integer loop counter selects each element of the
array in turn.
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*Add array OLD to array NEW making array TOTAL
PARAMETER (NDATA = 1024)
REAL OLD(NDATA), NEW(NDATA), TOTAL(NDATA)

*......
DO 100, I = 1,NDATA

TOTAL(I) = OLD(I) + NEW(I)
100 CONTINUE

Declaring Arrays

Arrays can have up to seven dimensions; the lower bound of each dimension is one unless declared
otherwise. There is no limit on the upper bound provided it is not less than the lower bound. Arrays which
are dummy arguments of a procedure may have their dimension bounds specified by integer variables
which are arguments of the procedure; in all other cases each dimension bound must be an integer
constant expression. This fixes the size of the array at compile-time.

Type,DIMENSION, andCOMMONstatements may all be used to declare arrays, butCOMMONstate-
ments have a specialised use (described in section 12). TheDIMENSIONstatement has a similar form to
a type statement but only declares the bounds of an array without determining its data type. It is usually
simpler and neater to use a type statement which specifies both at once:

CHARACTER COLUMN(5)*25, TITLE*80
Note that when declaring character arrays the string length follows the list of array bounds. The character
array COLUMN has 5 elements each of which is 25 characters long; TITLE is, of course, just a variable
80 characters long. Although a default string length can be set for an entire type statement, it is not
possible to set a default array size in a similar way.

It is generally good practice to use named constants to specify array bounds as this facilitates later
modifications:

PARAMETER (MAXIM = 15)
INTEGER POINTS(MAXIM)
COMPLEX SERIES(2**MAXIM)

These arrays all have a lower bound of one. A different lower bound can be specified for any dimension
as shown below. The lower and upper bounds are separated by a colon:

REAL TAX(1985:1990), PAY(12,1985:1990)
LOGICAL TRIPLE(-1:1, -1:1, -1:1, -1:1)

TAX has 6 elements from TAX(1985) to TAX(1990).
PAY has 72 elements from PAY(1,1985) to PAY(12,1990).
TRIPLE has 81 elements from BIN(-1,-1.-1.-1) to BIN(1,1,1,1).

Although Fortran itself sets no limits to the sizes of arrays that can be defined, the finite capacity of
the hardware is likely to do so. In virtual memory operating systems it is possible to use arrays larger
than physical memory: those parts of the array not in active use are held on backing store such as a disc
file.

Using Arrays

An array element reference must always use the same number of subscripts as the number of dimensions
declared for the array. Each subscript can be an integer expression of any complexity, but there are
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restrictions on functions with side effects (see section 9.3).

An array element reference is only valid if all of the subscript expressions are defined and if each one
is in the range declared for it. An array element can only be used in an expression if a value for it has
been defined. ADATAstatement (section 12) can be used to define an initial value for an entire array or
any set of elements.

An array can be used without subscripts:

• in a specification statement such as a type,DIMENSION, or SAVEstatement;

• in a function reference orCALL statement: this transfers the whole of the array to the associated
dummy argument (which must have a compatible array declaration);

• in the data transfer list of aREADor WRITEstatement: this causes the whole array to be input or
output. This is not permitted for an assumed size dummy argument array.

• as a unit identifier in aREADor WRITEstatement: a character array is then an internal file with
one record per element.

• as a format identifier in aREADor WRITEstatement: the format specification is contained in the
character array with its elements taken in sequence.

Storage Sequence

Arrays are always stored in a contiguous set of memory locations. In the case of multi-dimensional
arrays, the order of the elements is that the first subscript varies most rapidly, then the second subscript,
and so on. For example in the following 2-dimensional array, X(2,3) (which for simplicity I have made
one of only six elements):

X(2, 3) =

[
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

]

The elements are stored in the following sequence:
X(1,1), X(2,1), X(1,2), X(2,2), X(1,3), X(2,3)

i.e. the sequence moves down each column first, then across to the next row. This column order is
different from that used in some other programming languages.

The storage order may be important if you use large multi-dimensional arrays and wish to carry out
some operation on all the elements of the array. It is then likely to be faster to access the array in storage
order, i.e. by columns rather than rows. This means arranging loop indices with the last subscript indexed
by the outer loop, and so on inwards. For example:

DOUBLE PRECISION ARRAY(100,100), SUM
SUM = 0.0D0
DO 250,L = 1,100

DO 150,K = 1,100
SUM = SUM + ARRAY(K,L)

150 CONTINUE
250 CONTINUE

With the loops arranged this way around the memory locations are accessed in consecutive order, which
minimises the processor overhead in subscript calculations.
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6 Arithmetic

Fortran has good facilities for processing numbers. Arithmetic expressions and assignment statements
can include integer, real, double precision, or complex items. Data type conversions are provided auto-
matically when necessary; type conversions can also be performed explicitly using intrinsic functions.
Other intrinsic functions are available for trigonometry, logarithms, and other useful operations.

For example, the well-known cosine formula for the third side of a triangle, given the other two sides
and the angle between them is: √

b2 + c2 − 2 · b · c · cos(A)

Translated into a Fortran expression it looks like this:
SQRT(B**2 + C**2 - 2.0 * B * C * COS(ANGLEA))

which makes use of the intrinsic functionsSQRTandCOS. AlthoughSQRT(X) produces the same result
asX**0.5 , the square-root function is simpler, faster, and probably more accurate than raising to the
power of one half, which would actually be carried out using both theEXPandLOGfunctions.

Assignment statements evaluate an expression and assign its value to a variable (or array element).
Unlike almost all other Fortran statements, they do not start with a keyword. For example:

A = SQRT(B**2 + C**2 - 2.0 * B * C * COS(ANGLEA))
TOTAL(N/2+1) = 0.0
FLUX = FLUX + 1.0

6.1 Arithmetic Expressions

An expression in its simplest form is just a single operand, such as a constant or variable. More com-
plicated expressions combine various operands with operators, which specify the computations to be
performed. For example:

RATE * HOURS + BONUS
The rules of Fortran have been designed to resemble those of mathematics as far as possible, especially
in determining the order in which the expression is evaluated. In this example the multiplication would
always be carried out before the addition, not because if comes first, but because it has a higher prece-
dence. When in doubt, or to over-ride the precedence rules, parentheses can be used:

(ROOM + DINNER) * 1.15

Sub-expressions enclosed in parentheses are always evaluated first; they can be nested to any reason-
able depth. If in doubt, there is no harm in adding parentheses to determine the order of evaluation or to
make a complicated expression easier to understand.

Arithmetic expressions can contain any of the five arithmetical operators+ - * / ** .
The double asterisk represents exponentiation, i.e. raising a number to a power. Thus the mathematical
expression:

(1 + RATE/100)years

could be represented in Fortran as:
(1.0 + RATE/100.0)**YEARS

(note the explicit decimal points in the constants to make them real values).

Arithmetic expressions can involve operands of different data types: the data type of the result is
determined by some simple rules explained below.
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General Rules

Arithmetic expressions can contain arithmetic operands, arithmetic operators, and parentheses. There
must always be at least one operand. The operands can belong to any of the four arithmetic data types
(integer, real, double precision, or complex); the result also has an arithmetic data type. Operands can be
any of the following:

• unsigned literal constants

• named constants

• variables

• array elements

• function references

• complete expressions enclosed in parentheses.

The rules for forming more complicated arithmetic expressions are as follows. An arithmetic expression
can have any of the following forms:

operand
+operand
- operand
arithmetic-expression arith-op operand

where the arith-op can be any of these operators:

+ addition
- subtraction
* multiplication
/ division

** exponentiation

The effect of these rules is that an expression consists of a string of operands separated by operators
and, optionally, a plus or minus at the start. A leading plus sign has no effect; a leading minus sign
negates the value of the expression.

All literal arithmetical constants used in expressions must be unsigned: this is to prevent the use of
two consecutive operators which is confusing and possibly ambiguous:

4 / -3.0**-1 (illegal).
The way around this is to use parentheses, for example:

4 / (-3.0)**(-1)
which makes the order of evaluation explicit.
The order of evaluation of an expression is:

1. sub-expressions in parentheses

2. function references

3. exponentiation, i.e. raising to a power

4. multiplication and division
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5. addition, subtraction, or negation.

Within each of these groups evaluation proceeds from left to right, except that exponentiations are
evaluated from right to left. Thus:A / B / C is equivalent to(A / B) / C whereasX ** Y **
Z is equivalent toX ** (Y ** Z) .

An expression does not have to be evaluated fully if its value can be determined otherwise: for
example the result of:

X * FUNC(G)
can be determined without calling the function FUNC if X happens to be zero. This will not cause
problems if you only use functions that have no side effects.

Data Type Conversions

If an operator has two operands of the same data type then the result has the same type. If the operands
have different data types then an implicit type conversion is applied to one of them to bring it to the type
of the other. These conversions always go in the direction which minimises loss of information:

integer converts toreal converts tocomplex or double precision

Since there is no way of converting a complex number to double precision type, or vice-versa, with-
out losing significant information, both these conversions are prohibited: an operator cannot have one
complex operand and one of double precision type. All other combinations are permitted. These implicit
type conversions have the same result as if the appropriate intrinsic function (REAL, DBLE, or CMPLX)
had been used. These are described in detail below. Note that the data type of any operation just depends
on the two operands involved; the rest of the expression has no influence on it whatever.

Exponentiation is an exception to the type conversion rule: when the exponent is an integer it does
not have to be converted to the type of the other operand and the result is evaluated as if by repeated
multiplication. But if the exponent has any other data type the calculation is performed by implicit use
of the LOG and EXP functions, thus:

2.0**3 ===> 2.0 * 2.0 * 2.0 ===> 8.0

2.0**3.0 ===> EXP(3.0 * LOG(2.0)) ===> + 8.0

The first result will, of course, be computed more rapidly and accurately than the second. If the exponent
has a negative value the result is simply the reciprocal of the corresponding positive power, thus:

2.0**(-3) ===> 1.0/2.0**3 ===> 1.0/8.0 ===> +0.125

Note that conversion from real to double precision cannot produce any information not present origi-
nally. Thus with a real variable R and a double precision variable D:

R = 1.0 / 3.0
D = R

D may end up with a value such as 0.3333333432674408... which is no closer to the value of one third
than R was originally.

Integer Division

Integer division always produces a result which is another integer value: any fractional part is truncated,
i.e. rounded towards zero. This makes it especially important to provide a decimal point at the end of a
real constant even if the fractional part is zero. For example:
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8 / 3 ===> 2

-8 / 3 ===> -2

2**(-3) ===> 1/(2**3) ===> 1/8 ===> 0

The combination of the two preceding rules may have unexpected effects, for example:

(-2)**3 ===> (-2) * (-2) * (-2) ===> -8

whereas (-2)**3.0 is an invalid expression as the computer would try to evaluate the logarithm of -2.0,
which does not exist. Similarly, the expression:

3 / 4 * 5.0 ===> REAL(3/4) * 5.0 ===> 0.0

whereas

5.0 * 3 / 4 ===> 15.0 / REAL(4) ===> 3.75

Restrictions

Certain arithmetical operations are prohibited because their results are not mathematically defined. For
example dividing by zero, raising a negative value to a real power, and raising zero to a negative power.
The Fortran Standard does not specify exactly what is to happen if one of these errors occurs: most
systems issue an error message and abort the program.

Errors can also occur because numbers are stored on a computer with finite range and precision. The
results of adding or multiplying two very large numbers may be outside the number range: this is called
overflow. A similar effect on very large negative integers is called underflow. Most systems will issue
a warning message for overflow or underflow, and may abort the program, but some processors cannot
detect errors of this sort involving integer arithmetic.

Every operand (variable, array element, or function reference) used in an expression must have a
defined value at the time the expression is evaluated. Note that variables and arrays are initially unde-
fined unless a suitableDATAstatement is used. Expressions must not include references to any external
functions with side effects on other operands of the expression: see section 9.3 for more details.

Arithmetic Constant Expressions

Arithmetic constant expressions can be used inPARAMETERstatements and to specify implied-DO
parameters inDATAstatements. All the operands in a constant expression must be literal constants or
previously defined named constants. Variables, array elements, and function references are all prohibited.
Exponentiation is only allowed if the number is raised to an integer power.

The same rules apply to integer constant expressions but in addition the operands must all be integer
constants: such expressions can be used to specify array bounds in type,COMMON,andDIMENSION
statements, and to specify string lengths inCHARACTERstatements.

Bit-wise Logical Operations on Integers

When Fortran programs communicate directly with digital hardware it may be necessary to carry out bit-
wise logical operations on bit-patterns. Standard Fortran does not provide any direct way of doing this,
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since logical variables essentially only store one bit of information and integer variables can only be used
for arithmetic. Many systems provide, as an extension, intrinsic functions to perform bit-wise operations
on integers. The function names vary: typically they areIAND, IOR, ISHIFT . A few systems provide
allow the normal logical operators such as.AND. and.OR. to be used with integer arguments: this is a
much more radical extension and much less satisfactory, not only because it reduces portability, but also
reduces the ability of the compiler to detect errors in normal arithmetic expressions.

Many systems also provide format descriptors to transfer integers using octal and hexadecimal num-
ber bases: these are also non-standard.

Guidelines

Expressions with mixed data types should be examined carefully to ensure that the type-conversion rules
have the desired effect. It does no harm to use the type conversion functions explicitly and it may make
the working clearer.

Particular care is needed with the data types of literal constants. It is bad practice to use an integer
constant where you really need a real constant. Although this will work in most expressions it is a serious
mistake to use the wrong form of constant in the argument list of a procedure.

Long and complicated expressions which spread over several lines can be rather trying to read and
offer more scope for programming errors. Sometimes it is better to split the computation into several
shorter equations at the expense of one or two temporary variables.

It is often tempting to try to write programs that are as efficient as possible. With modern compilers
there is little point in trying to rearrange expressions to optimise speed. One of the few exceptions is that
if an intrinsic function is provided it is always best to use it; thusSQRT(X) is likely to be faster and
more accurate thanX**0.5 .

You may find that your system actually sets the whole of memory to zero initially, except for items
defined withDATAstatements, but it is very bad programming practice to rely on this.

6.2 Arithmetic Intrinsic Functions

Intrinsic functions are supplied automatically by the system and can be used in expressions in any pro-
gram unit. A description of their special properties appears in section 9.1.

Many of the arithmetic intrinsic functions have generic names: that is they can be used with several
different types of arguments. The SQRT function, for example, can be used with a real, double precision,
or complex argument. The Fortran system automatically selects the correct specific function for the job:
SQRT, DSQRT, or CSQRT. These specific names can be ignored in almost all circumstances, and are
listed only in the appendix. In most cases the data type of the function is the same as that of its argument
but there are a few obvious exceptions such as the type conversion functions.

In the descriptions below, the number and data type of the arguments of each intrinsic function are
indicated by a letter: I = integer, R = real, D = double precision, X = complex.

An asterisk on the left indicates that the result has the same data type as the arguments. Note that if
multiple arguments are permitted they must all have the same data type. Thus I = NINT(RD) indicates
that the NINT function can take a single real or double precision argument but its result is always integer,
whereas * = ANINT(RD) indicates that the result has the same type (real or double precision) as the
argument.
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Trignometric Functions

The functions in this group can all be used on real or double precision arguments, and SIN and COS can
also be used on complex numbers. In every case the result has the same data type as the argument.

* = SIN(RDX) sine of the angle in radians.
* = COS(RDX) cosine of the angle in radians.
* = TAN(RD) tangent of the angle in radians.
* = ASIN(RD) arc-sine; the result is in the range−π/2 to +π/2.
* = ACOS(RD) arc-cosine; the result is in the range 0 to+π .
* = ATAN(RD) arc-tangent; the result is in the range−π/2 to +π/2.
* = ATAN2(RD,RD) arc-tangent of arg1/arg2; the result is in the range−π to +π. Both

arguments must not be zero.
* = SINH(RD) hyperbolic sine.
* = COSH(RD) hyperbolic cosine.
* = TANH(RD) hyperbolic tangent.

Note that the arguments of SIN, COS, and TAN must be angles measured in radians (not degrees).
They can be used on angles of any size, positive or negative, but if the magnitude is very large the
accuracy of the result will be reduced. Similarly all the inverse trigonometric functions deliver a result
in radians; the argument of ASIN and ACOS must be in the range -1 to +1. The ATAN2 function can be
useful in resolving a result into the correct quadrant of the circle, thus:

ATAN(0.5) = 0.4636476
ATAN2(2.0,4.0) = 0.4636476
ATAN2(-2.0,-4.0) = -2.677945 ( = 0.4636476 -π).

Other Transcendental Functions

* = SQRT(RDX) square root.
* = LOG(RDX) natural logarithm, i.e. log to base e (where e = 2.718281828...).
* = EXP(RDX) returns the exponential, i.e. e to the power of the argument. This is the

inverse of the natural logarithm.
* = LOG10(RD) logarithm to base 10.

Note that LOG10, which may be useful to compute decibel ratios etc., is the only one of this group
which cannot be used on a complex argument.

Type Conversion Functions

These functions can be used to convert from any of the four arithmetic data types to any of the others.
They are used automatically whenever mixed data types are encountered in arithmetic expressions and
assignments.

I = INT(IRDX) converts to integer by truncation.
R = REAL(IRDX) converts to real.
D = DBLE(IRDX) converts to double precision.
X = CMPLX(IRDX) converts to complex.
X = CMPLX(IRD,IRD) converts to complex.

The integer conversion of INT rounds towards zero; if you need to round to the nearest integer use
the NINT function (described below). The CMPLX function produces a value with a zero imaginary
component unless it is used with two arguments (or one which is already complex). It is important to
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realise that many conversions lose information: in particular a double precision value is likely to lose
significant digits if converted to any other data type.

Minimum and Maximum

The MIN and MAX functions are unique in being able to take any number of arguments from two
upwards; the result has the same data type as the arguments.

* = MIN(IRD,IRD,...) returns the smallest of its arguments.
* = MAX(IRD,IRD,...) returns the largest of its arguments.

These two functions can, of course, be combined to limit a value to a certain range. For example, to
limit a value TEMPER to the range 32 to 212 you can use an expression such as:

MAX(32.0, MIN(TEMPER, 212.0))
Note that the minimum of the range is an argument of the MAX function and vice-versa.

To find the largest (or smallest) element of a large array it is necessary use a loop.

*Find largest value in array T of N elements:
TOP = T(1)
DO 25,I = 2,N

TOP = MAX(T(I), TOP)
25 CONTINUE
*TOP now contains the largest element of T.

Other Functions

* = AINT(RD) Truncates the fractional part (i.e. as INT) but preserves the data
type.

* = ANINT(RD) Rounds to the nearest whole number.
I = NINT(RD) Converts to integer by rounding to the nearest whole number.
* = ABS(IRD) Returns the absolute value of a number (i.e. it changes the sign

if negative).
R = ABS(X) Computes the modulus of a complex number (i.e. the square-

root of the sum of the squares of the two components).
* = MOD(IRD,IRD) returns A1 modulo A2, i.e. the remainder after dividing A1 by

A2.
* = SIGN(IRD,IRD) performs sign transfer: if A2 is negative the result is -A1, if A2

is zero or positive the result is A1.
* = DIM(IRD,IRD) returns the positive difference of A1 and A2, i.e. if A1> A2 it

returns (A1-A2), otherwise zero.
D = DPROD(R,R) Computes the double precision product of two real values.
R = AIMAG(X) Extracts the imaginary component of a complex number. Note

that the real component can be obtained by using the REAL
function.

X = CONJG(X) Computes the complex conjugate of a complex number.

The NINT and ANINT functions round upwards if the fractional part of the argument is 0.5 or more,
whereas INT and AINT always round towards zero. Thus:

INT(+3.5) = 3 NINT(+3.5) = 4
INT(-3.5) = -3 NINT(-3.5) = -4

The fractional part of a floating point number, X, can easily be found either by:
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X - AINT(X)
or

MOD(X, 1.0)
In either case, if X is negative the result will also be negative. The ABS function can always be used to
alter the sign if required.

The MOD function has other uses. For example it can find the day of the week from an absolute day
count such as Modified Julian Date (MJD):

MOD(MJD,7)
has a value between 0 and 6 for days from Wednesday to Tuesday. Similarly if you use the ATAN2
function but want the result to lie in the range 0 to 2*pi (rather than -pi to +pi) then, assuming the value
of TWOPI is suitably defined, the required expression is:

MOD(ATAN2(X,Y) + TWOPI, TWOPI)

6.3 Arithmetic Assignment Statements

An arithmetic assignment statement has the form:
arithmetic-var= arithmetic-expression

wherearithmetic-varcan be an arithmetic variable or array element. For example, the following assign-
ment statement is valid provided that N, K, and ANGLE are all defined values:

IMAGE(N/2+1,3*K-1) = SIN(ANGLE)**2 + 1.0
If the object on the left has a different data type from that of the expression on the right then a data type
conversion is applied automatically. The type conversion function (INT, REAL, DBLE, or CMPLX) is
selected to match the object on the left. Note that many type conversions lose information. If the object
on the left is an array element, its subscripts can be arbitrary integer expressions, but all the operands
in these expressions must be defined before the statement is executed and each must be in the range
declared for the corresponding subscript of the array.

Remember with an integer item on the left and an expression of one of the floating-point types, the
INT function is invoked: if the NINT function is really needed then it must be used explicitly to convert
the value of the expression.

7 Character Handling and Logic

This section describes the facilities for handling non-numerical data in Fortran. Character data are actu-
ally present in almost all programs, if only in the form of file names and error messages, but the facilities
for character manipulation are now quite powerful. The logical data type is even more indispensible
since a logical expression is used in everyIF statement.

7.1 Character Facilities

The character data type differs from all the others in one important respect: every character item has a
fixed length. This specifies the number of characters it holds.

The length of a literal character constant is just the number of characters between the enclosing
apostrophes (except that two consecutive apostrophe within the string count as one). Thus:

’it’’s’
is a character constant of length four. Because the length of every character variable, array, and function
has to be specified in advance it is nearly always necessary to useCHARACTERstatements to declare
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them, for example:
CHARACTER NAME*20, ADDRSS(3)*40, ZIP*7

The same applies to named character constants but for these a special notation sets the length to that of
the attached constant, which saves the trouble of counting characters:

CHARACTER TITLE*(*)
PARAMETER (TITLE = ’Latest mailing list’)

The fixed length of character objects makes it easy to output data in a fixed format as when printing a
table with neatly aligned columns, but sometimes it would be more convenient to have a variable length
string type as some other languages do. The rules for character assignment go some way towards this: if
an expression is too short then blanks are appended to it; if it is too long then characters are removed from
the right-hand end. For many purposes, therefore, it is only necessary to ensure that character variables
are at least as long as the longest string you need to store in them.

When transferring character information to procedures the length of the dummy argument can be set
automatically to that of the corresponding actual argument. With this passed length notation it is easy to
write general-purpose character handling procedures. This is described further in section 9.5.

The most common operations carried out on character strings are splitting them up and joining them
together. Any section of a character variable or array element can be extracted by using the substring
notation. Strings (and substrings) can be joined end to end by using the concatenation operator in a
character expression. These are described in the next two sections.

Another fairly common requirement is to search for a particular sequence of characters within a longer
string: this can be done with the intrinsic functionINDEX.

Other intrinsic functionsICHARandCHARare provided to convert a single character to an integer or
vice-versa according to its position within the native character set. More complicated conversions from
a numerical data type to character form and vice-versa are best carried out using the internal fileREAD
andWRITEstatements which allow the power of the format specification to be applied to the task. This
mechanism is described in section 10.3.

Character strings can be compared to each other using relational operators or intrinsic functions. The
latter use the ASCII collating sequence irrespective of the native character code. Further details are given
in section 7.6.

7.2 Character Substrings

The substring notation can be used to select any contiguous section of any character variable or array
element. The characters in any string are numbered starting from one on the left: the lower bound cannot
be altered as it can in arrays. A substring is selected simply by giving the first and last character positions
of the extract. For example, with:

CHARACTER METAL*10
METAL = ’CADMIUM’

thenMETAL(1:3) has the value’CAD’ while METAL(8:8) has the valueblankbecause the value is
padded out with blanks to its declared length.

Substrings must be at least one character long. They can be used in general in the same ways as
character variables. Continuing with the last example, the assignment statement:

METAL(3:4) = ’ES’
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will change the value of METAL to’CAESIUM ’ (with three blanks at the end, since the total length
stays at 10).

Substring Rules

The parentheses denoting a substring must contain a colon: there may be an integer expression on either
side of the colon. The first expression denotes the initial character position, the second one the last
character position. Both values must be within the range 1 to LEN, where LEN is the length of the parent
string, and the length of the resulting substring must not be less than one.

Although the colon must always be present, the two integer expressions are optional. The default
value for the first one is one, the default for the second is the position of the last character of the parent
string. Thus, staying with the last example:METAL(:2) has the value’CA’ while METAL(7:) has
the value’M’ with three blanks.

With array elements the substring expression follows the sub-script expression, for example:

CHARACTER PLAY(30)*80
PLAY(10) = ’AS YOU LIKE IT’

Then the substringPLAY(10)(4:11) has the value’YOU LIKE’ . Substrings can be used in expres-
sions anywhere except in the definition of a statement function; they can also be used on the left-hand
side of an assignment statement, and can also be defined by input/output statements.

7.3 Character Expressions

The character operator// is used to concatenate, or join, two character strings. It is, in fact, the only
character operator that Fortran provides. Thus:

’CUP’ // ’BOARD’ becomes’CUPBOARD’
The length of the result is just the sum of the lengths of the operands. Parentheses may be used in
character expressions but make no difference to the result. Note that any embedded or trailing blanks
(spaces) will be reproduced exactly in the resulting string.

The general form of a character-expression is thus:
character-operand

or character-expression// character-operand
wherecharacter-operandcan be any of the following:

• character constant (literal or named),

• character variable,

• character array element,

• character substring,

• character function reference.

There is one special restriction on character concatenation in procedures: a passed-length dummy ar-
gument can only be an operand of the concatenation operator in an assignment statement. This seemingly
arbitrary rule allows the compiler to determine how much work-space is required.
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7.4 Character Assignment Statements

The character assignment statement has the general form:
char-var= character-expression

wherechar-varcan be a character variable, array element, or substring.

There is one important restriction on character assignment statements: none of the characters being
referenced in the expression on the right may be defined in char-var on the left, that is to say there can be
no overlap. Thus the assignment statement:

STRING(1:N) = STRING(10:)
is valid only as long as N is no higher than 9. It is, of course, easy to get around this restriction by using
a temporary character variable with a suitable length.

Note when a value is assigned to a substring (as in the last example) the other characters in the parent
string are not affected at all. If the string was previously undefined then the other character positions will
still be undefined; otherwise they will retain their previous contents.

The expression and the character object to which its value is assigned may have different lengths: if
the expression is longer then the excess characters on the right are lost; if it is shorter then blanks are
appended. Care is needed to declare adequate lengths or else the results can be unexpected:

CHARACTER AUTHOR*30, SHORT*5, EXPAND*10
AUTHOR = ’SHAKESPEARE, WILLIAM’
SHORT = AUTHOR
EXPAND = SHORT

The resulting value ofEXPANDwill be ’SHAKE ’ where the last five characters are blanks.

7.5 Character Intrinsic Functions

The four main character intrinsic functions are described in this section. There are another four functions
provided to compare character strings with each other using the ASCII collating sequence: these are
described in section 7.6.

CHARand ICHAR

These two functions perform integer to character conversion and vice-versa using the internal code of
the machine. Although most computers now use the ASCII character code, it is by no means universal,
so these functions can only be used in a very limited way in portable software.

CHAR(I) returns the character at positionI in the code table. For example, on a machine using
ASCII code,CHAR(74) = ’J’ , since “J ” is the character number 74 in the ASCII code table.

ICHAR(STRING) returns the integer position in the code table of the first character of the argument
STRING. For example, on a machine using ASCII code,

ICHAR(’JOHN’) returns 74
ICHAR(’john’) returns 106

INDEX

INDEX is a search function; it takes two character arguments and returns an integer result.INDEX(S1,
S2) searches for the character-stringS2 in another stringS1, which is usually longer. IfS2 is present
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in S1 the function returns the character position at which it starts. If there is no match (orS1 is shorter
thanS2) then it returns the value zero. For example:

CHARACTER*20 SPELL
SPELL = ’ABRACADABRA’
K = INDEX(SPELL, ’RA’)

HereK will be set to 3 because this is the position of the first occurrence of the string’RA’ . To find
the second occurrence it is necessary to restart the search at the next character in the main string, for
example:

L = INDEX(SPELL(K+1:), ’RA’)
This will return the value 7 because the first occurrence of’RA’ in the substring’ACADABRA’ is at
position 7. To find its position in the parent string the offset,K, must be added, making 10.

TheINDEX function is often useful when manipulating character information. Suppose, for example,
we have a string NAME containing the a person’s surname and initials, e.g.

Mozart,W.A
The name can be reformatted to put the initials before the surname and omit the comma like this:

CHARACTER NAME*25, PERSON*25
*...

KCOMMA = INDEX(NAME, ’,’)
KSPACE = INDEX(NAME, ’ ’)
PERSON = NAME(KCOMMA+1:KSPACE-1) // NAME(1:KCOMMA-1)

Then PERSON will contain the string’W.A.Mozart’ (with blanks appended to the length of 25).
Note that a separate variable,PERSON,was necessary because of the rule about overlapping strings in
assignments.

LEN

The LEN function takes a character argument and returns its length as an integer. The argument may
be a local character variable or array element but this will just return a constant.LEN is more useful
in procedures where character dummy arguments (and character function names) may have their length
passed over from the calling unit, so that the length may be different on each procedure call. The length
returned byLEN is that declared for the item. Sometimes it is more useful to find the length excluding
trailing blanks. The next function does just that, usingLEN in the process.

INTEGER FUNCTION LENGTH(STRING)
*Returns length of string ignoring trailing blanks

CHARACTER*(*) STRING
DO 15, I = LEN(STRING), 1, -1

IF(STRING(I:I) .NE. ’ ’) GO TO 20
15 CONTINUE
20 LENGTH = I

END

7.6 Relational Expressions

A relational expression compares the values of two arithmetic expressions or two character expressions:
the result is a logical value, either true or false. Relational expressions are commonly used inIF state-
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ments, as in this example:

IF(SENSOR .GT. UPPER) THEN
CALL COOL

ELSE IF(SENSOR .LT. LOWER) THEN
CALL HEAT

END IF

The relational operators have forms such as.GT. and.LT. because the Fortran character set does
not include the usual characters. and<. Relational expressions are most commonly used inIF state-
ments, but any logical variable or array element may be used to store a logical value for use later on.

CHARACTER*10 OPTION
LOGICAL EXIT
EXIT = OPTION .EQ. ’FINISH’

*...
IF(EXIT) STOP ’Finish requested’

Logical expressions are covered in more detail in the next section.

General Forms of Relational Expression

arithmetic-exprn rel-op arithmetic-exprn
or character-exprn rel-op character-exprn
In either case the resulting expression has the logical type. The relational operatorrel-op can be any of
the following:

.EQ. equal to

.GE. greater than or equal to

.GT. greater than

.LE. less than or equal to

.LT. less than

.NE. not equal to

Note that these operators need a decimal point at either end to distinguish them from symbolic names.

Arithmetic Comparisons

When the two arithmetic values of differing data type are compared, a conversion is automatically ap-
plied to one of them (as in arithmetic expressions) to bring it to the type of the other. The direction of
conversion is always:

integerconverts toreal converts tocomplex or double precision.
When comparing integer expressions, there is a considerable difference between the.LE. and .LT.
operators, and similarly between.GE. and.GT. , so that you should consider carefully what action is
required in the limiting case before selecting the appropriate operator.

In comparisons involving the other arithmetic types you should remember that the value of a number
may not be stored exactly. This means that it is unwise to rely on tests involving the .EQ. and .NE.
operators except in special cases, for example if one of the values has previously been set to zero or some
other small integer.



7 CHARACTER HANDLING AND LOGIC 56

There are two restrictions on complex values: firstly they cannot be compared at all to ones of double
precision type. Secondly they cannot use relational operators other than .EQ. and .NE. because there is
no simple linear ordering of complex numbers.

Character comparisons

A character value can only be compared to another character value; if they do not have the same length
then the shorter one is padded out with blanks to the length of the other before the comparison takes
place. Tests for equality (or inequality) do not depend on the character code, the two strings are just
compared character by character until a difference is found. Comparisons using the other operators
(.GE., .GT., .LE., and.LT. ) do, however, depend on the local character code. The two expres-
sions are compared one character position at a time until a difference is found: the result then depends
on the relative positions of the two characters in the local collating sequence, i.e. the order in which the
characters appear in the character code table.

The Fortran Standard specifies that the collating sequence used by all systems must have the following
basic properties:

• all the upper-case letters are in order, A< B < C etc.

• all digits are in order, 0< 1 < 2 etc.

• all digits precede all letters or vice-versa,

• the blank (space) character precedes letters and digits.

It does not, however, specify whether letters precede digits or follow them. As a result, if strings of
mixed text are sorted using relational operators the results may be machine dependent. For example, the
expression

’APPLE’ .LT. ’APRICOT’
is always true because at the two strings first differ at the third character position, and the letter ’P’
precedes ’R’ in all Fortran collating sequences. However:

’A1’ .GT. ’AONE’
will have a value true if your system uses EBCDIC but false if it uses ASCII, because the digits follow
letters in the former and precede them in the latter.

In order to allow character comparisons to be made in a truly portable way, Fortran has provided four
additional intrinsic functions. These perform character comparisons using the ASCII collating sequence
no matter what the native character code of the machine. These functions are:

LGE(S1, S2) greater than or equal to
LGT(S1, S2) greater than
LLE(S1, S2) less than or equal to
LLT(S1, S2) less than.

They take two character arguments (of any length) and return a logical value. Thus the expression:
LGT(’A1’, ’AONE’)

will always have the value false.

Character comparisons are case-sensitive on machines which have lower-case letters in their character
set. It is advisable to convert both arguments to the same case beforehand.
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Guidelines

Systems which supports both upper and lower-case characters are usually case-sensitive: before testing
for the presence of particular keywords or commands it is usually best to convert the input string to
a standard case, usually upper-case. Unfortunately there are no standard intrinsic functions to do this,
though many systems provide them as an extension.

In character sorting operations where the strings contain mixtures of letters, digits, or other symbols,
you should use the intrinsic functions to make the program portable. In other character comparisons,
however, the relational operator notation is probably preferable because it has a more familiar form and
may be slightly more efficient.

7.7 Logical Expressions

Logical expressions can be used in logical assignment statements, but are most commonly encountered
in IF statements where there is a compound condition, for example:

IF(AGE .GE. 60 .OR. (STATUS .EQ. ’WIDOW’ .AND.
$ NCHILD .GT. 0) THEN

This combines the values of three relational expressions, two of them comparing arithmetic values, the
other character values. The logical operators such as.AND. and .OR. also need decimal points at
either end to distinguish them from symbolic names. The.OR. operator performs an inclusive or, the
exclusive or operator is called.NEQV. .

Rules

A logical expression can have any of the following forms:

• logical-term

• .NOT. logical-term

• logical-expression logical-operator logical-term

Where:logical-termcan be any of the following:

• logical constant (literal or named),

• logical variable,

• logical array element,

• logical function reference,

• logical expression enclosed in parentheses,

• relational expression.

and the logical operator can be any of the following:
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.AND. logical and

.OR. logical inclusive or

.EQV. logical equivalence

.NEQV. logical non-equivalence (i.e. exclusive or).

Note that the rules of logical expressions only allow two successive operators to occur if the second
of them is the unary operator .NOT. which negates the value of its operand. The effects of the four binary
logical operators are shown in the table below for the four possible combinations of operands, x and y.

x y x .AND. y x .OR. y x .EQV. y x .NEQV. y
false false false false true false
true false false true false true
false true false true false true
true true true true true false

Note that a logical expression can have operands which are complete relational expressions, and these
can in turn contain arithmetic expressions. The complete order of precedence of the operators in a general
expression is as follows:

1. arithmetical operators (in the order defined in section 6.1 above).

2. relational operators

3. .NOT.

4. .AND.

5. .OR.

6. .EQV. and.NEQV.

If the operators .EQV. and .NEQV. are used at the same level in an expression they are evaluated from
left to right.

These rules reduce the need for parentheses in logical expressions, thus:
(X .GT. A) .OR. (Y .GT. B)

would have exactly the same meaning if all the parentheses had been omitted.

A Fortran system is not required to evaluate every term in a logical expression completely if its value
can be determined more simply. In the above example, if X had been greater than A then it would not
be necessary to compare Y and B for the expression would have been true in either case. This improves
efficiency but means that functions with side-effects should not be used.

Guidelines

Complicated logical and relational expressions can be hard to read especially if they extend on to several
successive lines. It helps to line up similar conditions on successive lines, and to use parentheses.
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7.8 Logical Assignment Statements

A logical assignment statement has the form:
logical-var= logical-expression

Where thelogical-var can be a logical variable or array element. Logical variables and array elements
are mainly used to store the values of relational expressions until some later point where they are used in
IF statements.

8 Control Statements

Executable statements are normally executed in sequence except as specified by control statements. The
END=andERR=keywords of input/output statements can also affect the execution sequence.

8.1 Control Structures

Branches

The best way to select alternative paths through a program is to use the block-IF structure: this may
comprise a single block to be executed when a specified condition is true or several blocks to cover
several eventualities. Where theIF -block would only contain one statement it is possible to use an
abbreviated form called (for historical reasons) the logical-IF statement.

There is also a computedGO TOstatement which can produce a multi-way branch similar to the
“case” statements of other languages.

Loops

Another fundamental requirement is that of repetition. If the number of cycles is known in advance then
the DOstatement should be used. This also controls a block of statements known as theDO-loop. A
CONTINUEstatement usually marks the end of aDO-loop.

Fortran has no direct equivalent of the “do while” and “repeat until” forms available in some program
languages for loops of an indefinite number of iterations, but they can be constructed using simpleGO
TOandIF statements.

Other Control Statements

The STOPstatement can be used to terminate execution. Other statements which affect execution se-
quence are described in other sections: theENDstatement was covered in section 4.7; procedure calls
including theCALL andRETURNstatements are described in section 9.

8.2 IF -Blocks

The simplest form ofIF -block looks like this:

IF(N .NE. 0) THEN
AVERAG = SUM / N
AVGSQ = SUMSQ / N

END IF
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The statements in the block are only executed if the condition is true. In this example the statements
in the block are not executed if N is zero in order to avoid division by zero.

TheIF -block can also contain anELSEstatement to handle the alternative:

IF(B**2 .GE. 4.0 * A * C) THEN
WRITE(UNIT=*,FMT=*)’Real roots’

ELSE
WRITE(UNIT=*,FMT=*)’No real roots’

END IF

Since theIF statement contains a logical expression its value can only be true or false, thus one or
other of these blocks will always be executed.

If there are several alternative conditions to be tested, they can be specified withELSE IF statements:

IF(OPTION .EQ. ’PRINT’) THEN
CALL OUTPUT(ARRAY)

ELSE IF(OPTION .EQ. ’READ’) THEN
CALL INPUT(ARRAY)

ELSE IF(OPTION .EQ. ’QUIT’) THEN
CLOSE(UNIT=OUT)
STOP ’end of program’

ELSE
WRITE(UNIT=*,FMT=*)’Incorrect reply, try again...’

END IF

There can be any number of ELSE IF blocks but in each case one, and only one, will be executed
each time. Without an ELSE block on the end and nothing would have happened when an invalid option
was selected.

Block-IF General Rules

The general form of the block-if structure is as follows:

IF( logical-expression ) THEN
a block of statements

ELSE IF( logical-expression ) THEN
another block of statements

ELSE
a final block of statements

END IF

The IF THEN, ELSE IF , andELSEstatements each govern one block of statements. There can be
any number ofELSE IF statements. TheELSEstatement (together with its block) is also optional, and
there can be at most one of these.

The first block of statements is executed only if the first expression is true. Each block after anELSE
IF is executed only if none of the preceding blocks have been executed and the attachedELSE IF
expression is true. If there is anELSEblock it is executed only if none of the preceding blocks has been
executed.
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After a block has been executed control is transferred to the statement following theEND IF state-
ment at the end of the structure (unless the block ends with some statement which transfers control
elsewhere).

Any block can contain a complete block-IF structure properly nested within it, or a completeDO-loop,
or any other executable statements (exceptEND).

It is illegal to transfer control into any block from outside it, but there is no restriction on transferring
control out of a block.

The rules for logical expressions are covered in section 7.7.

Guidelines

The indentation scheme shown in the examples above is not mandatory but the practice of indenting
each block by a few characters relative to the rest of the program is strongly recommended. It makes the
structure of the block immediately apparent and reduces the risk of failing to match each IF with an END
IF. An indenting scheme is especially useful whenIF -blocks are nested within others. For example:

IF(POWER .GT. LIMIT) THEN
IF(.NOT. WARNED) THEN

CALL SET(’WARNING’)
WARNED = .TRUE.

ELSE
CALL SET(’ALARM’)

END IF
END IF

The limited width of the statement field can be a problem whenIF -blocks are nested to a very great
depth: but this tends to mean that the program unit is getting too complicated and that it will usually be
beneficial to divide it into subroutines. If you accidentally omit anEND IF statement the compiler will
flag the error but will not know where you forgot to put it. In such cases the compiler may get confused
and generate a large number of other error messages.

When anIF -block which is executed frequently contains a large number ofELSE IF statements it
will be slightly more efficient to put the most-likely conditions near the top of the list as when they occur
the tests lower down in the list will not need to be executed.

8.3 DO-Loops

TheDOstatement controls a block of statements which are executed repeatedly, once for each value of a
variable called the loop-control variable. The number of iterations depends on the parameters of theDO
statement at the heads of the loop. The first item after the keyword “DO” is the label which is attached to
the last statement of the loop. For example:

*Sum the squares of the first N elements of the array X
SUM = 0.0
DO 15, I = 1,N

SUM = SUM + X(I)**2
15 CONTINUE
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If we had wanted only to sum alternate elements of the array we could have used a statement like:
DO 15,I = 1,N,2

and then the value of I in successive loops would have been 1, 3, 5, etc. The final value would be N if
N were odd, or only to N-1 if N were even. If the third parameter is omitted the step-size is one; if it is
negative then the steps go downwards. For example

DO 100,I = 5,1,-1
WRITE(UNIT=*,FMT=*) I**2

100 CONTINUE

will produce 5 records containing the values 25, 16, 9, 4, and 1 respectively.

Loops can be nested to any reasonable depth. Thus the following statements will set the two dimen-
sional array FIELD to zero.

REAL FIELD(NX, NY)
DO 50, IY = 1,NY

DO 40, IX = 1,NX
FIELD(IX,IY) = 0.0

40 CONTINUE
50 CONTINUE

General Form of DOStatement

TheDOstatement has two forms:
DOlabel , variable= start , limit, step
DOlabel , variable= start , limit

In the second form the step size is implicitly one.

The label marks the final statement of the loop. It must be attached to an executable statement
further on in the program unit. The rules permit this statement to be any executable statement except
another control statement, but it is strongly recommended that you use theCONTINUEstatement here.
CONTINUEhas no other function except to act as a dummy place-marker.

The comma after the label is optional but, as noted in section 1.4, is a useful precaution.

Thevariablewhich follows is known as the loop control variable or loop index; it must be a variable
(not an array element) but may have integer, real, or double precision type.

Thestart, limit, andstepvalues may be expressions of any form of integer, real, or double precision
type. If the step value is present it must not be zero, if omitted it is taken as one. The number of iterations
is computed before the start of the first one, using the formula:

iterations = MAX(INT(0, (limit - start + step) / step))
Note that if the limit value is less than start the iteration count is zero unless step is negative. A zero
iteration count is permitted but means that the contents of the loop will not be executed at all and control
is transferred to the first statement after the end of the loop. The loop control variable does not necessarily
reach the limiting value, especially if the step-size is larger than one.

Statements within the loop are permitted to alter the value of the expressions used for start, limit, or
step but this has no effect on the iteration count which is fixed before the first iteration starts.

The loop control variable may be used in expressions but a new value must not be assigned to it within
the loop.

DO-loops may contain otherDO-loops completely nested within them provided that a different loop
control variable is used in each one. Although it is permissible for two different loops to terminate on
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the same statement, this can be very confusing. It is much better to use a separateCONTINUEstatement
at the end of each loop. Similarly completeIF -blocks may be nested withinDO-loops, and vice-versa.

Other control statements may be used to transfer control out of the range of aDO-loop but it is illegal
to try to jump into a loop from outside it. If you exit from a loop prematurely in this way the loop control
variable keeps its current value and may be used outside to determine how many loops were actually
executed.

After the normal termination of aDO-loop the loop control variable has the value it had on the last
iteration plus one extra increment of the step value. Thus with:

DO 1000, NUMBER = 1,100,3
1000 CONTINUE

On the last iteration NUMBER would be 99, and on exit from the loop NUMBER would be 102. This
provision can be useful in the event of exit from a loop because of some error:

PARAMETER (MAXVAL = 100)
REAL X(MAXVAL)
DO 15, I = 1,MAXVAL

READ(UNIT=*, FMT=*, END=90) X(I)
15 CONTINUE
90 NVALS = I - 1

The action of the statement labelled 90 is to set NVALS to the number of values actually read from the
file whether there was a premature exit because the end-of-file was detected or it reached the end of the
array space at MAXVAL.

Guidelines

If you use a loop-control variable of any type other than integer there is a risk that rounding errors
will accumulate as it is incremented repeatedly. In addition, if the expressions for the start, limit, and
step values are not of integer type the number of iterations may not be what you expect because the
formula uses the INT function (not NINT). None of these problems can occur if integer quantities are
used throughout theDOstatement.

8.4 Logical-IF Statement

The logical-IF statement is best regarded as a special case of theIF -block when it only contains one
statement. Thus:

IF(E .NE. 0.0) THEN
RECIPE = 1.0 / E

END IF

can be replaced by a single logical-IF statement:
IF(E .NE. 0.0) RECIPE = 1.0 / E

The general form of the logical-IF statement is:
IF( logical-expression) statement

The statement is executed only if thelogical expressionhas a true value. Any executable statement can
follow exceptDO, IF, ELSE IF, ELSE, END IF , or END.
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8.5 UnconditionalGO TOStatement

The unconditionalGO TOstatement simply produces a transfer of control to a labelled executable state-
ment elsewhere in the program unit. Its general form is:

GO TOlabel
Note that control must not be transferred into anIF -block or aDO-loop from outside it.

Guidelines

The unconditionalGO TOstatement makes it possible to construct programs with a very undisciplined
structure; such programs are usually hard to understand and to maintain. Good programmers useGO TO
statements and labels very sparingly. Unfortunately it is not always possible to avoid them entirely in
Fortran because of a lack of alternative control structures.

The next example finds the highest common factor of two integers M and N using a Euclid’s algo-
rithm. It can be expressed roughly: while (M N) subtract the smaller of M and N from the other repeat
until they are equal.

PROGRAM EUCLID
WRITE(UNIT=*, FMT=*) ’Enter two integers’
READ(UNIT=*, FMT=*) M, N

10 IF(M .NE. N) THEN
IF(M .GT. N) THEN

M = M - N
ELSE

N = N - M
END IF
GO TO 10

END IF
WRITE(UNIT=*, FMT=*)’Highest common factor = ’, M
END

8.6 ComputedGO TOStatement

The computedGO TOstatement is an alternative to the block-IF when a large number of options are
required and they can be selected by the value of an integer expression. The general form of the statement
is:

GO TO(label1, label2, ... labelN), integer-expression
The comma after the right parenthesis is optional.

The expressionis evaluated; if its value is one then control is transferred to the statement attached
to the first label in the list; if it is two control goes to the second label, and so on. If the value of the
expression is less than one or higher than N (where there are N labels in the list) then the statement has
no effect and execution continues with the next statement in sequence. The same label may be present
more than once in the list.

The computedGO TOsuffers from many of the same drawbacks as the unconditionalGO TO, since
if its branches are used without restraint they can become impenetrable thickets. The best way is to
follow the computedGO TOstatement with the sections of code in order, all except the last terminated
with its own unconditionalGO TOto transfer control to the end of the whole structure.
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Any computedGO TOstructure could be replaced by anIF -block with a suitable number ofELSE
IF clauses. If there are a very large number of cases then this would be a little less efficient; this has to
be balanced against the increased clarity of the IF structure compared to the label-riddenGO TO.

An example of the use of the computedGO TOis given here in a subroutine which computes the
number of days in a month, given the month number MONTH between 1 and 12, and the four-digit year
number in YEAR. Note that each section of code except the last is terminated with aGO TOstatement
to escape from the structure.

SUBROUTINE CALEND(YEAR, MONTH, DAYS)
INTEGER YEAR, MONTH, DAYS
GO TO(310,280,310,300,310,300,310,310,300,310,300,310)MONTH

* Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec
STOP ’Impossible month number’

*February: has 29 days in leap year, 28 otherwise.
280 IF(MOD(YEAR,400) .EQ. 0 .OR. (MOD(YEAR,100) .NE. 0

$ .AND. MOD(YEAR,4) .EQ. 0)) THEN
DAYS = 29

ELSE
DAYS = 28

END IF
GO TO 1000

* Short months
300 DAYS = 30

GO TO 1000
* Long months
310 DAYS = 31
* return the value of DAYS
1000 END

8.7 STOPStatement

TheSTOPstatement simply terminates the execution of the program and returns control to the operating
system. Its general form is:

STOP ’ character constant’
The character constant (which must be a literal and not named constant) is optional: if present its value
is “made available” to the user; usually it the message appears on your terminal. For compatibility with
Fortran66 it is possible to use a string of one to five decimal digits instead of the character constant.

Ideally a program should only return control to the operating system from one point, the end of the
main program, where theENDstatement does all that is necessary. In practice, even in the best-planned
programs, situations can arise which make it pointless to continue. If these are detected in the main
program there is always the option of jumping to theENDstatement, but within procedures there may be
no choice but to use aSTOPstatement.

9 Procedures

Any set of computations can be encapsulated in a procedure. The main purpose of a procedure is to
allow the same set of operations to be invoked at different points in a program. Procedures also make it
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possible to use the same code in several different programs. It is good practice to split a large program
into sections whenever it becomes too large to be handled conveniently in one piece. The optimum size
of a program unit is quite small, probably no more than 100 lines.

Four different forms of procedure can be used in Fortran programs:-

• Intrinsic functions

• Statement functions

• External functions (also known as function subprograms)

• Subroutines.

Intrinsic functions are provided automatically by the Fortran system, whereas the other three forms of
procedure are user-written. Statement functions, which are defined with the statement function state-
ment, can only be used in the program unit in which they were defined and are subject to other special
restrictions. External functions and subroutines are two alternative forms of external procedure: each is
specified as a separate program unit and can be used (with only a few restrictions) anywhere else in the
program.

9.1 Intrinsic Functions

Intrinsic functions have a number of unique properties. The data type of each intrinsic function is known
to the Fortran system and is not subject to the normal rules.IMPLICIT and type statements alone have
no effect on them. Some intrinsic functions have generic names: when these are used the compiler selects
the appropriate specific function according to the data type of the arguments.

A few intrinsic functions such as MAX, MIN, and CMPLX, are allowed to have a variable number of
arguments, but all of the arguments must have the same data type. User-written procedures cannot have
optional arguments or generic type.

Although intrinsic functions can be used in any program unit, their names are not global, nor are they
reserved words. It is, however, best to avoid choosing a name for a variable or array which is identical
to that of an intrinsic function. It may cause confusion and in the long run it may make it more difficult
to enhance the program. A name clash is more serious if it involves an external function or subroutine,
for in this case the external procedure name must be specified in anEXTERNALstatement to resolve
the ambiguity. By this means it is possible to substitute an external function of your own for one of the
intrinsic functions.

The Fortran Standard specifies a fairly extensive set of intrinsic functions which must always be avail-
able but it does not prevent the provision of additional ones. Many systems provide additional intrinsic
functions which, for example, obtain the current date and time, generate pseudo-random numbers, or
evaluate Gaussian probability. The main drawback in using non-standard functions is that you may have
to find a substitute if your program is moved to another system which does not have the same extensions.

The standard intrinsic functions for the arithmetic types are described in detail in section 6.2; those
used with character-strings are covered in section 7.5. A complete alphabetical list is provided in the
appendix.

9.2 Statement Functions

Statement functions can be defined within any executable program unit by means of statement function
statements. They can only be used, however, within the same program unit. Although statement functions
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have limited uses, they are unjustly neglected by many programmers.

The statement function statement resembles an ordinary assignment statement. For example:
FAHR(CELS) = 32.0 + 1.8 * CELS

The function FAHR converts a temperature in degrees Celsius to its equivalent in Fahrenheit. Thus
FAHR(20.0) would return a value 68.0 approximately.

A statement function can have any number of dummy arguments (such as CELS above) all of which
must appear in the expression on the right-hand side; this expression may also include constants, vari-
ables, or array elements used elsewhere in the program. When the function is called the current values
of these items will be used. For example:

REAL M1, M2, G, R
NEWTON(M1, M2, R) = G * M1 * M2 / R**2

A reference to the function in an assignment statement such as:
FORCE = NEWTON(X, Y, DIST)

will return a value depending on the values of the actual arguments X, Y, and DIST, and that of the
variable G at the time the function is referenced.

Definitions of statement functions can also include references to intrinsic functions, external func-
tions, or previously defined statement functions:

PARAMETER (PI = 3.14159265, DTOR = PI/180.0)
SIND(THETA) = SIN(THETA * DTOR)
COSD(THETA) = COS(THETA * DTOR)
TAND(THETA) = SIND(THETA) / COSD(THETA)

These definitions allow trigonometry on angles specified in degrees rather than radians.

The scope of each dummy argument name (such asTHETAabove) is that of the statement alone;
these names can be used elsewhere in the program unit as variables of the same data type with no effect
whatever on the evaluation of the function.

Statement functions can have any data type; the name and arguments follow the normal type rules.
They can be useful in character handling, for example:

LOGICAL MATH, DIGIT, DORM
CHARACTER C*1
DIGIT(C) = LGE(C, ’0’) .AND. LLE(C, ’9’)
MATH(C) = INDEX(’+-*/’, C) .NE. 0
DORM(C) = DIGIT(C) .OR. MATH(C)

These three functions each return a logical value when presented with a single character argument:
DIGIT tests to see whether the character is a digit,MATHwhether it is an operator symbol, andDORM
will test for either condition. Note the use of the lexical comparison functionsLGE and LLE in the
definition ofDIGIT which make it completely independent of the local character code.

Statement Function Rules

Statement function statements must appear after any the specification statements but before all executable
statements in the program unit. They may be intermixed withDATAand FORMATstatements. The
general form is:
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function( dummy1, dummy2,... dummyN) = expression
The functionmay have any data type; theexpressionwill normally have the same data type but if both
have an arithmetic type then the normal conversion rules for arithmetic assignment statements apply.

The name of the function must be distinct from all other symbolic names in the program unit. It may
appear in type statements but not in other specification statements. (There is one exception: a common
block is permitted to have the same name as a statement function but since common block names always
appear between slashes there is little risk of confusion). If the function has character type its length must
be an integer constant expression.

The dummy arguments are simply symbolic names. A name may not appear more than once in the
same list. These names may be used elsewhere in the program unit as variables of the same data type.

The expression must contain the dummy arguments as operands. The operands may also include:

• literal constants, named constants, variables, and array elements; these will have their values at the
time the function is executed and must then be defined.

• references to intrinsic and external functions,

• references to statement functions defined earlier in the same program unit,

• complete expressions enclosed in parentheses.

Note that character substrings are not permitted. The variables and array elements used in the expres-
sion must be defined at the time that the function reference is executed.

Guidelines

Although statement functions have a limited role to play in programs because they can only be defined
in a single statement, references to statement functions they may be executed more efficiently than ref-
erences to external functions; many modern compilers expand statement function references to in-line
code when it is advantageous to do so.

If the same statement function is needed in more than one program unit it would is possible to use an
INCLUDEfacility to provide the same definition each time, but it will usually be better to use an external
function instead.

9.3 External Procedures

There are two forms of external procedure, both of which take the form of a complete program unit.

• External functions, which are specified by a program unit starting with aFUNCTIONstatement.
They are executed whenever the corresponding function is used as an operand in an expression.

• Subroutines, which are specified by a program unit starting with aSUBROUTINEstatement. They
are executed in response to aCALL statement.

In either form the last statement of the program unit must be anENDstatement. Any other statements
(exceptPROGRAMor BLOCK DATAstatements) may be used within the program unit.

There are two statements provided especially for use in external procedures. TheSAVEstatement
ensures that the values of local variables and arrays are preserved after the procedure returns control
to the calling unit: these values will then be available if the procedure is executed subsequently. The
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RETURNstatement may be used to terminate the execution of the procedure and cause an immediate
return to the control of the calling unit. Execution of theENDstatement at the end of the procedure has
exactly the same effect. Both of these are described in full later in the section.

Most Fortran systems also allow external procedures to be specified in languages other than Fortran:
they can be called in the same way as Fortran procedures but their internal operations are, of course,
beyond the scope of this book.

It is best to think of the subroutine as the more general form of procedure; the external function should
be regarded as a special case for use when you only need to return a single value to the calling unit.

Here is a simple example of a procedure which converts a time of day in hours, minutes, and seconds
into a count of seconds since midnight. Since only one value needs to be returned, the procedure can
have the form of an external function. (In fact this is such a simple example that it would have been
possible to define it as a statement function.)

*TSECS converts hours, minutes, seconds to total seconds.
REAL FUNCTION TSECS(NHOURS, MINS, SECS)
INTEGER NHOURS, MINS
REAL SECS
TSECS = ((NHOURS * 60) + MINS) * 60 + SECS
END

Thus if we use a function reference like TSECS(12,30,0.0) in an expression elsewhere in the program
it will convert the time to seconds since midnight (about 45000.0 seconds in this case). The items in
parentheses after the function name :

(12,30,0.0)
are known as the actual arguments of the function; these values are transferred to the corresponding
dummy arguments

(NHOURS, MINS, SECS)
of the procedure before it is executed. In this example the argument list is used only to transfer infor-
mation into the function from outside, the function name itself returns the required value to the calling
program. In subroutines, however, there is no function name to return information but the arguments can
be used for transfers in either direction, or both. The rules permit them to be used in this more general
way in functions, but it is a practice best avoided.

The next example performs the inverse conversion to the TSECS function. Since it has to return three
values to the calling program unit the functional form is no longer appropriate, and a subroutine will be
used instead.

*Subroutine HMS converts TIME in seconds into hours, mins,secs.
SUBROUTINE HMS(TIME, NHOURS, MINS, SECS)
REAL TIME, SECS
INTEGER NHOURS, MINS
NHOURS = INT(TIME / 3600.0)
SECS = TIME - 3600.0 * NHOURS
MINS = INT(SECS / 60.0)
SECS = TIME - 60.0 * MINS
END

In this case the subroutine could be executed by using a statement such as:

CALL HMS(45000.0, NHRS, MINS, SECS)
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WRITE(UNIT=*, FMT=*) NHRS, MINS, SECS

Here the first argument transfers information into the subroutine, the other three are used to return the
values which it calculates. You do not have to specify whether a particular argument is to transfer
information in or out (or in both directions), but there are rules about the form of actual argument that
you can use in each case. These are explained in full below.

Procedure Independence

Each program unit has its own independent set of symbolic names and labels. Type statements and
IMPLICIT statements may be used to specify their data types.

External procedures can themselves call any other procedures and these may call others in turn, but
procedure are not allowed to call themselves either directly or indirectly; that is recursive calling is not
permitted in Fortran.

Information Transfer

Information can be transferred to and from an external procedure by any of three methods.

• An argument list: as shown in the two examples above. This is the preferred method of interfacing
as it is the most flexible and modular. It is described in detail in the remainder of this section.

• Common blocks: these are lists of variables or arrays which are stored in areas of memory shared
between two or more program units. They are useful in special circumstances when procedures
have to be coupled closely together, but are otherwise less satisfactory. Common blocks are cov-
ered in detail in section 12.

• External files: interfacing via external files is neither convenient nor efficient but it is mentioned
here to point out that external files are global. Once a file has been opened in any program unit
it can be accessed anywhere in the program provided that the appropriate I/O unit number is
available. A unit number can be passed into a procedure as an integer argument.

Procedure Execution

It is not necessary to know how the Fortran system actually transfers information from one procedure to
another to make use of the system, but the rules governing the process are somewhat complicated and
it may be easier to understand them if you appreciate the basis on which they have been formulated.
The rules in the Fortran Standard are based on the assumption that the address of an actual argument is
transferred in each case: this may or may not be true in practice but the properties will be the same as if
it is.

This means that when you reference a dummy variable or assign a new value to one you are likely to
be using the memory location occupied by the actual argument. By this means even large arrays can be
transferred efficiently to procedures. A slight modification of this system is needed for items of character
type so that the length of the item can be transferred as well as its address.

When a function reference orCALL statement is executed any expressions in the argument list are
evaluated; the addresses of the arguments are then passed to the procedure. When it returns control this
automatically makes updated values available to the corresponding items in the actual argument list.
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Functions with Side-effects

The rules of Fortran allow functions to have side-effects, that is to alter their actual arguments or to
change other variables within common blocks. Functions with side-effects cannot be used in expressions
where any of the other operands of the expression would be affected, nor can they be used in subscript
or substring references when any other expression used in the same references would be affected. This
rule ensures that the value of an expression cannot depend arbitrarily on the way in which the computer
chooses to evaluate it.

There are also restrictions on functions which make use of input/output statements even on internal
files: these cannot be used in expressions in other I/O statements. This is to avoid the I/O system being
used recursively.

By far the best course is to use the subroutine form for any procedure with side-effects.

9.4 Arguments of External Procedures

Arguments can pass information into a procedure or out from it, or in both directions. This just depends
on the way that the dummy argument is used within the procedure. Although any argument order is
permitted, it is common practice to put input arguments first, then those that pass information both ways,
and then arguments which just return information from the procedure.

The rules for argument association are the same for both forms of external procedure. The list of
dummy arguments (sometimes called formal arguments) of an external procedure is specified in its
FUNCTIONor SUBROUTINEstatement. There can be any number of arguments, including none at
all. If there are no arguments then the parentheses can be omitted in theCALL and SUBROUTINE
statement but not in aFUNCTIONstatement or function reference.

The dummy argument list is simply a list of symbolic names which can represent any mixture of

• variables

• arrays

• procedures.

A name cannot, of course, appear twice in the same dummy argument list.

Dummy variables, arrays, and procedures are distinguished only by the way that they are used within
the procedure. The dimension bounds of a dummy arrays must be specified in a subsequent type or
DIMENSIONstatement; dummy procedures must appear in aCALLor EXTERNALstatement or be used
in a function reference; anything else is, by elimination, a dummy argument variable.

Dummy argument variables and arrays can be used in executable statements in just the same way as
local items of the same form, but they cannot appear inSAVE, COMMON, DATA,or EQUIVALENCE
statements.

Argument Association

The actual arguments of the function reference orCALL statement become associated with the corre-
sponding dummy arguments of theFUNCTIONor SUBROUTINEstatement. The main rules are as
follows:

• There must be the same number of actual and dummy arguments; they are associated solely by
their position in the two lists. Optional arguments are not permitted in Fortran77.
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• If the dummy argument is a variable, array, or procedure used as a function then the corresponding
actual argument must have the same data type.

• If the dummy argument is an array then its array bounds must not be larger than those of the
corresponding actual argument. Alternatively the dimension bounds of a dummy array can be
passed in by means of other procedure arguments to form an adjustable array. This option and the
assumed-size array are both described in section 9.6.

• If the dummy argument is a character item then its length must not be greater than that of the cor-
responding actual argument. Alternatively there is a passed-length option for character arguments:
see section 9.5.

Because program units are compiled independently, it is difficult for the compiler to check for mis-
matches in actual and dummy argument lists. Although mismatches could, in principle, be detected by
the linker, this rarely seems to happen in practice. Errors, particularly mismatches of data type or array
bounds, are especially easy to make but hard to detect. Sometimes the only indication is that the program
produces the wrong answer. This shows how important it is to check procedure interfaces.

Duplicate Arguments

The same actual argument cannot be used more than once in a procedure call if the corresponding dummy
arguments are assigned new values. For example, with:

SUBROUTINE FUNNY(X, Y)
X = 2.0
Y = 3.0
END

A call such as:
CALL FUNNY(A, A)

would be illegal because the system would try to assign 2.0 and 3.0 to the variable A in some unpre-
dictable order, so one cannot be certain of the result.

A similar restriction applies to variables which are returned via a common block and also through the
procedure argument list.

9.5 Variables as Dummy Arguments

If the dummy argument of a procedure is a variable and it has a value assigned to it within the procedure,
then the corresponding actual argument can be:

• a variable,

• an array element, or

• a character substring.

If, however, the dummy variable preserves its initial value throughout the execution then the actual
argument can be any of these three forms above or alternatively:

• an expression of any form (including a constant).
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The reason for this restrictions is easy to see by considering the ways of calling the subroutine SILLY
in the next example:

SUBROUTINE SILLY(N, M)
N = N + M
END

If it is called with a statement such as:

NUMBER = 10
CALL SILLY(NUMBER, 5)

then the value of NUMBER will be updated to 15 as a result of the call. But it is illegal to call the
function with a constant as the first argument, thus:

CALL SILLY(10, 7)

because on exit the subroutine will attempt to return the value of 17 to the actual argument which was
specified as the constant ten. The effects of committing such an error are system-dependent. Some
systems detect the attempt to over-write a constant and issue an error message; others ignore the attempt
and allow the program to continue; but some systems will actually go ahead and over-write the constant
with a new value, so that if you use the constant 10 in some subsequent statement in the program you
may get a value of 17. Since this can have very puzzling effects and be hard to diagnose, it is important
to avoid doing this inadvertently.

If you make use of procedures written by other people you may be worried about unintentional effects
of this sort. In principle it should be possible to prevent a procedure altering a constant argument by
turning each one into an expression, for example like this:

CALL SILLY(+10, +5)
or

CALL SILLY((10), (5))
Although either of these forms should protect the constants, it is still against the rules of Fortran for the
procedure to attempt to alter the values of the corresponding dummy arguments. You will have to judge
whether it is better to break the rules of the language than to risk corrupting a constant.

Expressions, Subscripts, and Substrings

If the actual argument contains expressions then these are evaluated before the procedure starts to exe-
cute; even if the procedure later modifies operands of the expression this has no effect on the value passed
to the dummy argument. The same rule applies to array subscript and character substring expressions.
For example, if the procedure call consists of:

CALL SUB( ARRAY(N), N, SIN(4.0*N), TEXT(1:N) )
and the procedure assigns a new value to the second argument, N, during its execution, it has no effect
on the other arguments which all use the original value of N. The updated value of N will, of course, be
passed back to the calling unit.

Passed-length Character Arguments

A character dummy argument will have its length set automatically to that of the corresponding actual
argument if the special length specification of*(*) is used.
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To illustrate this, here is a procedure to count the number of vowels in a character string. It uses the
intrinsic function LEN to determine the length of its dummy argument, and the INDEX function to see
whether each character in turn is in the set “AEIOU” or not.

INTEGER FUNCTION VOWELS(STRING)
CHARACTER*(*) STRING
VOWELS = 0
DO 25, K = 1,LEN(STRING)

IF( INDEX(’AEIOU’, STRING(K:K)) .NE. 0) THEN
VOWELS = VOWELS + 1

END IF
25 CONTINUE

END

Note that the function has a data type which is not the default for its initial letter so that it will usually
be necessary to specify its name in aINTEGERstatement in each program unit which references the
function.

This passed-length mechanism is recommended not only for general-purpose software where the
actual argument lengths are unknown, but in all cases unless there is a good reason to specify a dummy
argument of fixed length.

There is one restriction on dummy arguments with passed length: they cannot be operands of the
concatenation operator (//) except in assignment statements. Note that the same form of length specifica-
tion “*(*) ” can be used for named character constants but with a completely different meaning: named
constants are not subject to this restriction.

9.6 Arrays as Arguments

If the dummy argument of a procedure is an array then the actual argument can be either:

• an array name (without subscripts)

• an array element.

The first form transfers the entire array; the second form, which just transfers a section starting at the
specified element, is described in more detail further on.

The simplest, and most common, requirement is to make the entire contents of an array available in a
procedure. If the actual argument arrays are always going to be the same size then the dummy arrays in
the procedure can use fixed bounds. For example:

SUBROUTINE DOT(X, Y, Z)
*Computes the dot product of arrays X and Y of 100 elements
* producing array Z of the same size.

REAL X(100), Y(100), Z(100)
DO 15, I = 1,100

Z(I) = X(I) * Y(I)
15 CONTINUE

END

This procedure could be used within a program unit like this:
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PROGRAM PROD
REAL A(100), B(100), C(100)
READ(UNIT=*,FMT=*)A,B
CALL DOT(A, B, C)
WRITE(UNIT=*,FMT=*)C
END

This is perfectly legitimate, if inflexible, since it will not work on arrays of any other size.

Adjustable Arrays

A more satisfactory solution is to generalise the procedure so that it can be used on arrays of any size.
This is done by using an adjustable arrays declaration. Here the operands in each dimension bound
expression may include integer variables which are also arguments of the procedure (or members of a
common block). The following example shows how this may be done:

SUBROUTINE DOTPRO(NPTS, X, Y, Z)
REAL X(NPTS), Y(NPTS), Z(NPTS)
DO 15, I = 1,NPTS

* etc.

In this case the calling sequence would be something like:
CALL DOTPRO(100, A, B, C)

An adjustable array declaration is permitted only for arrays which are dummy arguments, since the actual
array space has in this case already been allocated in the calling unit or at some higher level. The method
can be extended in the obvious way to cover multi-dimensional arrays and those with upper and lower
bounds, for example:

SUBROUTINE MULTI(MAP, K1, L1, K2, L2, TRACE)
DOUBLE PRECISION MAP(K1:L1, K2:L2)
REAL TRACE(L1-K1+1)

The adjustable array mechanism can, of course, be used for arrays of any data type; an adjustable array
can also be passed as an actual argument of a procedure with, if necessary, the array bounds passed on in
parallel.

Each array bound of a dummy argument array may be an integer expression involving not only con-
stants but also integer variables passed in to the procedure either as arguments or by means of a common
block. The extent of each dimension of the array must not be less than one and must not be greater than
the extent of the corresponding dimension of the actual argument array.

If any integer variable (or named constant) used in an array-bound expression has a name which does
not imply integer type then theINTEGERstatement which specifies its type must precede its use in a
dimension-bound expression.

Assumed-size Arrays

There may be circumstances in which it is impracticable to use either fixed or adjustable array declara-
tions in a procedure because the actual size of the array is unknown when the procedure starts executing.
In this case an assumed-size array is a viable alternative. These are also only permitted for dummy argu-
ment arrays of procedures, but here the array is, effectively, declared to be of unknown or indefinite size.
For example:
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REAL FUNCTION ADDTWO(TABLE, ANGLE)
REAL TABLE(*)
N = MAX(1, NINT(SIN(ANGLE) * 500.0))
ADDTWO = TABLE(N) + TABLE(N+1)
END

Here the procedure only knows that array TABLE is one-dimensional with a lower-bound of one: that
is all it needs to know to access the appropriate elements N and N+1. In executing the procedure it is
our responsibility to ensure that the value of ANGLE will never result in an array subscript which is
out of range. This is always a danger with assumed-size arrays. Because the compiler does not have
any information about the upper-bound of an assumed-size array it cannot use any array-bound checking
code even if it is normally able to do this. An assumed-size array can only have the upper-bound of its
last dimension specified by an asterisk, all the other bounds (if any) must conform to the normal rules
(or be adjustable using integer arguments).

An assumed size dummy argument array is specified with an asterisk as the upper bound of its last (or
only) dimension. All the other dimension bounds, if any, must conform to normal rules for local arrays
or adjustable arrays.

There is one important restriction on assumed size arrays: they cannot be used without subscripts in
I/O statements, for example in the input list of aREADstatement or the output list of aWRITEstatement.
This is because the compiler has no information about the total size of the array when compiling the
procedure.

Array Sections

The rules of Fortran require that the extent of an array (in each dimension if it is multi-dimensional)
must be at least as large in the actual argument as in the dummy argument, but they do not require actual
agreement of both lower and upper bounds. For example:

PROGRAM CONFUS
REAL X(-1:50), Y(10:1000)
READ(UNIT=*,FMT=*) X, Y
CALL OUTPUT(X)
CALL OUTPUT(Y)
END

SUBROUTINE OUTPUT(ARRAY)
REAL ARRAY(50)
WRITE(UNIT=*,FMT=*) ARRAY
END

The effect of this program will be to output the elements X(-1) to X(48) since X(48) corresponds to
ARRAY(50), and then output Y(10) to Y(59) also. The subroutine will work similarly on a slice through
a two-dimensional array:

PROGRAM TWODIM
REAL D(100,20)

* ...
NSLICE = 15
CALL OUTPUT(D(1,NSLICE))
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In this example the slice of the array from elements D(1,15) to D(50,15) will be written to the output file.
In order to work out what is going to happen you need to know that Fortran arrays are stored with the
first subscript most rapidly varying, and that the argument association operates as if the address of the
specified element were transferred to the base address of the dummy argument array.

The use of an array element as an actual argument when the dummy argument is a complete array is
a very misleading notation and the transfer of array sections should be avoided if at all possible.

Character Arrays

When a dummy argument is a character array the passed-length mechanism can be used in the same way
as for a character variable. Every element of the dummy array has the length that was passed in from the
actual argument.

For example, a subroutine designed to sort an array of character strings into ascending order might
start with specification statements like these:

SUBROUTINE SORT(NELS, NAMES)
INTEGER NELS
CHARACTER NAMES(NELS)*(*)

Alternatively the actual argument can be a character variable or substring. In such cases it usually makes
more sense not to use the passed-length mechanism. For example an actual argument declared:

CHARACTER*80 LINE
could be passed to a subroutine which declared it as an array of four 20-character elements:

SUBROUTINE SPLIT(LINE)
CHARACTER LINE(4)*20

Although this is valid Fortran, it is not a very satisfactory programming technique to use a procedure
call to alter the shape of an item so radically.

9.7 Procedures as Arguments

Fortran allows one procedure to be used as the actual argument of another procedure. This provides a
powerful facility, though one that most programmers use only rarely. Procedures are normally used to
carry out a given set of operations on different sets of data; but sometimes you want to carry out the same
set of operations on different functional forms. Examples include: finding the gradient of a function,
integrating the area under a curve, or simply plotting a graph. If the curve is specified as a set of data
points then you can simply pass over an array, but if it is specified by means of some algorithm then the
procedure which evaluates it can itself be an actual argument.

In the next example, the subroutine GRAPH plots a graph of a function MYFUNC between specified
limits, with its argument range divided somewhat arbitrarily into 101 points. For simplicity it assumes
the existence of a subroutine PLOT which moves the pen to position (X,Y). Some other subroutines
would, in practice, almost certainly be required.

SUBROUTINE GRAPH(MYFUNC, XMIN, XMAX)
*Plots functional form of MYFUNC(X) with X in range XMIN:XMAX.

REAL MYFUNC, XMIN, XMAX
XDELTA = (XMAX - XMIN) / 100.0
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DO 25, I = 0,100
X = XMIN + I * XDELTA
Y = MYFUNC(X)
CALL PLOT(X, Y)

25 CONTINUE
END

The procedureGRAPHcan then be used to plot a function simply by providing its name them as the first
argument of the call. The only other requirement is that the name of each function used as an actual
argument in this way must be specified in anINTRINSIC or EXTERNALstatement, as appropriate.
Thus:

PROGRAM CURVES
INTRINSIC SIN, TAN
EXTERNAL MESSY
CALL GRAPH(SIN, 0.0, 3.14159)
CALL GRAPH(TAN, 0.0, 0.5)
CALL GRAPH(MESSY, 0.1, 0.9)
END

REAL FUNCTION MESSY(X)
MESSY = COS(0.1*X) + 0.02 * SIN(SQRT(X))
END

This will first plot a graph of the sine function, then of the tangent function with a different range, and
finally produce another plot of the external function calledMESSY. These functions must, of course, have
the same procedure interface themselves and must be called correctly in theGRAPHprocedure.

It is possible to pass either a function or a subroutine as an actual argument in this way: the only
difference is that aCALL statement is used instead of a function reference to execute the dummy proce-
dure. It is possible to pass a procedure through more than one level of procedure call in the same way.
Continuing the last example, another level could be introduced like this:

PROGRAM CURVE2
EXTERNAL MESSY
INTRINSIC SIN, TAN
CALL GRAPH2(PRETTY)
CALL GRAPH2(TAN)
END

SUBROUTINE GRAPH2(PROC)
EXTERNAL PROC
CALL GRAPH(PROC, 0.1, 0.7)
END

Thus the procedureGRAPH2sets limits to each plot and passes the procedure name on toGRAPH. The
symbolic namePROCmust be declared in anEXTERNALstatement as it is a dummy procedure: an
EXTERNALstatement is required whether the actual procedure at the top level is intrinsic or external.
The syntax of theINTRINSIC andEXTERNALstatements is given in section 9.12 below.



9 PROCEDURES 79

The name of an intrinsic function used as an actual argument must be a specific name and not a generic
one. This is the only circumstance in which you still have to use specific names for intrinsic functions.
A full list of specific names is given in the appendix. A few of the most basic intrinsic functions which
are often expanded to in-line code (those for type conversion, lexical comparison, as well as MIN and
MAX) cannot be passed as actual arguments.

9.8 Subroutine and Call Statements

It is convenient to describe these two statements together as they have to be closely matched in use. The
general form of theSUBROUTINEstatement is:

SUBROUTINEname( dummy1, dummy2,... dummyN)
or

SUBROUTINEname
The second form just indicates that if there are no arguments then the parentheses are optional.

The symbolic name of the subroutine becomes a global name; it must not be used at all within the
program unit and must not be used for any other global item within the entire executable program.

The dummy arguments are also simply symbolic names. The way in which these are interpreted is
covered in the next section.

TheCALL statement has similar general forms:
CALL name( arg1, arg2,... argN )

or
CALL name

Again, if there are no arguments the parentheses are optional.

The name must be that of a subroutine (or dummy subroutine). Each arg is an actual argument which
can be a variable, array, substring, array element or any form of expression. The permitted forms, which
depend on the form of the corresponding dummy argument and how it is used within the subroutine, are
fully described in the preceding sections.

9.9 RETURNStatement

TheRETURNstatement just consists of the keyword

RETURN

Its effect is to stop the procedure executing and to return control, and where appropriate argument
and function values, to the calling program unit. The execution of theENDstatement at the end of the
program unit has the exactly the same effect, so thatRETURNis superfluous in procedures which have
only one entry and one exit point (as all well-designed procedures should). It is, however, sometimes
convenient to useRETURNfor an emergency exit. Here is a somewhat simple-minded example just to
illustrate the point:

REAL FUNCTION HYPOT(X, Y)
*Computes the hypotenuse of a right-angled triangle.

REAL X, Y
IF(X .LE. 0.0 .OR. Y .LE. 0.0) THEN

WRITE(UNIT=*,FMT=*)’Warning: impossible values’
HYPOT = 0.0
RETURN

END IF
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HYPOT = SQRT(X**2 + Y**2)
END

This function could be used in another program unit like this:

X = HYPOT(12.0, 5.0)
Y = HYPOT(0.0, 5.0)

which would assign to X the value of 13.0000 approximately, while the second function call would cause
a warning message to be issued and would return a value of zero to Y.

In the external function shown above it would have been perfectly possible to avoid having two exits
points by an alternative ending to the procedure, such as:

IF(X .LE. 0.0 .OR. Y .LE. 0.0) THEN
WRITE(UNIT=*,FMT=*)’Warning: impossible values’
HYPOT = 0.0

ELSE
HYPOT = SQRT(X**2 + Y**2)

END IF
END

In more realistic cases, however, the main part of the calculation would be much longer than just one
statement and it might then be easier to understand the working if aRETURNstatement were to be used
than with almost all of the procedure contained within an ELSE-block. A third possibility for emergency
exits is to use an unconditionalGO TOstatement to jump to a label placed on theENDstatement.

9.10 FUNCTIONStatement

TheFUNCTIONstatement must be the first statement of every external function. Its general form is:
type FUNCTION( dummy1, dummy2,... dummyN)

The typespecification is optional: if it is omitted then the type of the result is determined by the usual
rules. The function name may have its type specified by a type orIMPLICIT statement which appears
later in the program unit. If the function is of type character then the length may be specified by a literal
constant (but not a named constant) or may be given in the formCHARACTER*(*) in which case the
length will be passed in as the length declared for the function name in the calling program unit.

There may be any number of dummy arguments including none, but the parentheses must still be
present. Dummy arguments may, as described in section 9.4, be variables, arrays, or procedures.

The function name may be used as a variable within the function subprogram unit; a value must
be assigned to this variable before the procedure returns control to the calling unit. If the function
name used the passed-length option then the corresponding variable cannot be used as an operand of the
concatenation operator except in an assignment statement. The passed-length option is less useful for
character functions than for arguments because the length is inevitably the same for all references from
the same program unit. For example:

PROGRAM FLEX
CHARACTER CODE*8, CLASS*6, TITLE*16
CLASS = CODE(’SECRET’)
TITLE = CODE(’ORDER OF BATTLE’)
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END

CHARACTER*(*) FUNCTION CODE(WORD)
CHARACTER WORD*(*), BUFFER*80
DO 15, K = 1,LEN(WORD)

BUFFER(K:K) = CHAR(ICHAR(WORD(K:K) + 1)
15 CONTINUE

CODE = BUFFER
END

Unfortunately, although this function can take in an argument of any length up to 80 characters long and
encode it, it can only return a result of exactly 8 characters long when called from the program FLEX, so
that it will not produce the desired result when provided with the longer character string. This limitation
could be overcome with the use of a subroutine with a second passed-length argument to handle the
returned value.

Functions without arguments do not have a wide range of uses but applications for them do occur up
from time to time, for example when generating random numbers or reading values from an input file.
For example:

PROGRAM COPY
REAL NEXT
DO 10,I = 1,100

WRITE(UNIT=*,FMT=*) NEXT()
10 CONTINUE

END

REAL FUNCTION NEXT()
READ(UNIT=*,FMT=*) NEXT
END

The parentheses are needed on the function call to distinguish it from a variable. The function statement
itself also has to have the empty pair of parentheses, presumably to match the call.

9.11 SAVEStatement

SAVEis a specification statement which can be used to ensure that variables and arrays used within a
procedure preserve their values between successive calls to the procedure. Under normal circumstances
local items will become “undefined” as soon as the procedure returns control to the calling unit. It is
often useful to store the values of certain items used on one call to avoid doing extra work on the next.
For example:

SUBROUTINE EXTRA(MILES)
INTEGER MILES, LAST
SAVE LAST
DATA LAST /0/
WRITE(UNIT=*, FMT=*) MILES - LAST, ’ more miles.’
LAST = MILES
END
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This subroutine simply saves the value of the argumentMILES each time and subtracts it from the next
one, so that it can print out the incremental value. The value ofLAST had to be given an initial value
using aDATAstatement in order to prevent its use with an undefined value on the initial call.

Local variables and arrays and complete named common blocks can be saved usingSAVEstatements,
but not variables and arrays which are dummy arguments or which appear within common blocks.

Items which are initially defined with aDATAstatement but which are never updated with a new value
do not need to be saved.

TheSAVEstatement has two alternative forms:
SAVEitem, item, ... item
SAVE

Where eachitem can be a local variable or (unsubscripted) array, or the name of a common block en-
closed in slashes. The second form, with no list of items, saves all the allowable items in the program
unit. This form should not be used in any program unit which uses a common block unless all common
blocks used in that program unit are also used in the main program or saved in every program unit in
which it appears. TheSAVEstatement can be used in the main program unit (so that it could be packaged
with other specifications in anINCLUDEfile) but has no effect.

Many current Fortran systems have a simple static storage allocation scheme in which all variables
are saved whetherSAVEis used or not. But on small computers which make use of disc overlays, or large
ones with virtual memory systems, this may not be so. You should always take care to use theSAVE
statement anywhere that its use is indicated to make your programs safe and portable. Even where it is at
present strictly redundant it still indicates to the reader that the procedure works by retaining information
from one call to the next, and this is valuable in itself.

9.12 EXTERNALand INTRINSIC Statements

TheEXTERNALstatement is used to name external procedures which are required in order to run a given
program unit. It may specify the name of any external function or subroutine. It is required in three rather
different circumstances:

• whenever an external procedure or dummy procedure is used as the actual argument of another
procedure call;

• to call any procedure which has a name duplicating an intrinsic function;

• to ensure that a named block data subprogram is linked into the complete executable program.
This specialised use is covered further in section 12.4.

TheINTRINSIC statement is used to declare a name to be that of an intrinsic function. It is normally
necessary only when that function is to be used as the actual argument of another procedure call, but may
also be advisable when calling a non-standard intrinsic function to remove any ambiguity which might
arise if an external function of the same name also existed.

The general form of the two statements is the same:
EXTERNALename, ename,... ename
INTRINSIC iname, iname,... iname

Whereenamecan be the name of an external function or subroutine or a dummy procedure;inamemust
be specific name of an intrinsic function. For example, to use the real and double precision versions of
the trigonometric functions as actual arguments we need:

INTRINSIC SIN, COS, TAN, DCOS, DSIN, DTAN
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When the function name SIN is used as an actual argument it refers to the specific real sine function; in
other contexts it still has its usual generic property. The use of procedures as actual arguments is covered
in detail in section 9.7; a list of specific names of intrinsic functions is given in the appendix.

10 Input/Output Facilities

The I/O system of Fortran is relatively powerful, flexible, and well-defined. Programs can be portable
and device-independent even if they make extensive use of input/output facilities: this is difficult if
not impossible in many other high-level languages. The effects of the hardware and operating system
cannot, of course, be ignored entirely but they usually only affect fairly minor matters such as the forms
of file-name and the maximum record length that can be used.

TheREADandWRITEstatements are most common and generally look like this:

READ(UNIT=*, FMT=*) NUMBER
WRITE(UNIT=13, ERR=999) NUMBER, ARRAY(1), ARRAY(N)

The pair of parentheses after the wordREADor WRITEencloses the control-list: a list of items which
specifies where and how the data transfer takes place. The items in this list are usually specified with
keywords. The list of data items to be read or written follow the control-list.

Other input/output statements have a similar form except that they only have a control-list. There are
the file-handling statementsOPEN, CLOSE,andINQUIRE, as well as theREWINDandBACKSPACE
statements which alter the currently active position within a file.

Before covering these statements in detail, it is necessary to explain some of the concepts and termi-
nology involved.

10.1 Files, I/O Units, and Records

In Fortran the term file is used for anything that can be handled with aREADor WRITE statement:
the term covers not just data files stored on disc or tape and also peripheral devices such as printers or
terminals. Strictly these should all be called external files, to distinguish them from internal files.

An internal file is nothing more than a character variable or array which is used as a temporary file
while the program is running. Internal files can be used withREADandWRITEstatements in order to
process character information under the control of a format specification. They cannot be used by other
I/O statements.

Before an external file can be used it must be connected to an I/O unit. I/O units are integers which
may be chosen freely from zero up to a system-dependent limit (usually at least 99). Except inOPEN
andINQUIRE statements, files can only be referred to via their unit numbers.

TheOPENstatement connects a named file to a numbered unit. It usually specifies whether the file
already exists or whether a new one is to be created, for example:

OPEN(UNIT=1, FILE=’B:INPUT.DAT’, STATUS=’OLD’)
OPEN(UNIT=9, FILE=’PRINTOUT’, STATUS=’NEW’)

For simplicity most of the examples in this section show an actual integer as the unit identifier, but it
helps to make software more modular and adaptable if a named constant or a variable is used instead.
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I/O units are a global resource. A file can be opened in any program unit; once it is open I/O operations
can be performed on it in any program unit provided that the same unit number is used. The unit number
can be held in an integer variable and passed to the procedure as an argument.

The connection between a file and a unit, once established, persists until:

• the program terminates normally (at aSTOPstatement or theENDof the main program);

• anotherOPENstatement connects a different file to the same unit;

• or aCLOSEstatement is executed on that unit.

Although all files are closed when the program exits, it is good practice to close them explicitly
as soon as I/O operations on them are completed. If the program terminates abnormally, for example
because an error occurs or it is aborted by the user, any files which are open, especially output files, may
be left with incomplete or corrupted records.

The INQUIRE statement can be used to obtain information about the current properties of external
files and I/O units.INQUIRE is particularly useful when writing library procedures which may have to
run in a variety of different program environments. You can find out, for example, which unit numbers
are free for use or whether a particular file exists and if so what its characteristics are.

Records

A file consists of a sequence of records. In a text file a record corresponds to a line of text; in other cases
a record has no physical basis, it is just a convenient collection of values chosen to suit the application.
There is no need for a record to correspond to a disc sector or a tape block.READandWRITEstatements
always start work at the beginning of a record and always transfer a whole number of records.

The rules of Fortran set no upper limit to the length of a record but, in practice, each operating system
may do so. This may be different for different forms of record.

Formatted and Unformatted Records

External files come in two varieties according to whether their records are formatted or unformatted.
Formatted records store data in character-coded form, i.e. as lines of text. This makes them suitable for
a wide range of applications since, depending on their contents, they may be legible to humans as well
as computers. The main complication for the programmer is that eachWRITEor READstatement must
specify how each value is to be converted from internal to external form or vice-versa. This is usually
done with a format specification.

Unformatted records store data in the internal code of the computer so that no format conversions are
involved. This has several advantages for files of numbers, especially floating-point numbers. Unformat-
ted data transfers are simpler to program, faster in execution, and free from rounding errors. Furthermore
the resulting data files, sometimes called binary files, are usually much smaller. A real number would, for
example, have to be turned into a string of 10 or even 15 characters to preserve its precision on a format-
ted record, but on an unformatted record a real number typically occupies only 4 bytes i.e. the same as 4
characters. The drawback is that unformatted files are highly system-specific. They are usually illegible
to humans and to other brands of computer and sometimes incompatible with files produced by other
programming languages on the same machine. Unformatted files should only be used for information to
be written and read by Fortran programs running on the same type of computer.
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Sequential and Direct Access

All peripheral devices allow files to be processed sequentially: you start at the beginning of the file and
work through each record in turn. One important advantage of sequential files is that different records
can have different lengths; the minimum record length is zero but the maximum is system-dependent.

Sequential files behave as if there were a pointer attached to the file which always indicates the next
record to be transferred. On devices such as terminals and printers you can only read or write in strict
sequential order, but when a file is stored on disc or tape it is possible to use theREWINDstatement to
reset this pointer to the start of the file, allowing it to be read in again or re-written. On suitable files the
BACKSPACEstatement can be used to move the pointer back by one record so that the last record can be
read again or over-written.

One unfortunate omission from the Fortran Standard is that the position of the record pointer is not
defined when an existing sequential file is opened. Most Fortran systems behave sensibly and make
sure that they start at the beginning of the file, but there are a few rogue systems around which make it
advisable, in portable software, to useREWINDafter theOPENstatement. Another problem is how to
append new records to an existing sequential file. Some systems provide (as an extension) an “append”
option in theOPENstatement, but the best method using Standard Fortran is to open the file and read
records one at a time until the end-of-file condition is encountered; then useBACKSPACEto move the
pointer back and clear the end-of-file condition. New records can then be added in the usual way.

The alternative access method is direct-access which allows records to be read and written in any
order. Most systems only permit this for files stored on random-access devices such as discs; it is some-
times also permitted on tapes. All records in a direct-access file must be the same length so that the
system can compute the location of a record from its record number. The record length has to be chosen
when the file is created and (on most systems) is then fixed for the life of the file. In Fortran, direct-access
records are numbered from one upwards; eachREADor WRITEstatement specifies the record number at
which the transfer starts.

Records may be written to a direct-access file in any order. Any record can be read provided that it
exists, i.e. it has been written at some time since the file was created. Once a record has been written
there is no way of deleting it, but its contents can be updated, i.e. replaced, at any time.

A few primitive operating systems require the maximum length of a direct-access file to be specified
when the file is created; this is not necessary in systems which comply fully with the Fortran Standard.

10.2 External Files

Formatted and unformatted records cannot be mixed on the same file and on most systems files designed
for sequential-access are quite distinct from those created for direct-access: thus there are four different
types of external file. There is no special support in Standard Fortran for any other types of file such as
indexed-sequential files or name-list files.

Formatted Sequential Files

These are often just called text files. Terminals and printers should always be treated as formatted se-
quential files. Data files of this type can be created in a variety of ways, for example by direct entry from
the keyboard, or by using a text editor. Some Fortran systems do not allow records to be longer than a
normal line of text, for example 132 characters. Unless a text file is pre-connected it must be opened
with anOPENstatement, but theFORM=andACCESS=keywords are not needed as the default values
are suitable:
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OPEN(UNIT=4, FILE=’REPORT’, STATUS=’NEW’)
All data transfers must be carried out under format control. There are two options with files of this type:
you can either provide your own format specification or use list-directed formatting.

The attraction of list-directed I/O is that the Fortran system does the work, providing simple data
transfers with little programming effort. They are specified by having an asterisk as the format identifier:

WRITE(UNIT=*, FMT=*)’Enter velocity: ’
READ(UNIT=*, FMT=*, END=999) SPEED

List-directed input is quite convenient when reading numbers from a terminal since it allows virtually
“free-format” data entry. It may also be useful when reading data files where the layout is not regular
enough to be handled by a format specification. List-directed output is satisfactory when used just to
output a character string (as in the example above), but it produces less pleasing results when used to
output numerical values since you have no control over the positioning of items on the line, the field-
width, or the number of decimal digits displayed. Thus:

WRITE(UNIT=LP, FMT=*)’ Box of’,N,’ costs ’,PRICE

will produce a record something like this:
Box of 12 costs 9.5000000

List-directed output is best avoided except to write simple messages and for diagnostic output during
program development. The rules for list-directed formatting are covered in detail in section 10.10.

The alternative is to provide a format specification: this provides complete control over the data
transfer. The previous example can be modified to use a format specification like this:

WRITE(UNIT=LP, FMT=55)’Box of’,N,’ costs ’,PRICE
55 FORMAT(1X, A, I3, A, F6.2)

and will produce a record like this:
Box of 12 costs 9.5 0

The format specification is provided in this case by aFORMATstatement: its label is the format identifier
in theWRITEstatement. Other ways of providing format specifications are described in section 10.6.

One unusual feature of input under control of a format specification is that each line of text will appear
to be padded out on the right with an indefinite number of blanks irrespective of the actual length of the
data record. This means that, among other things, it is not possible to distinguish between an empty
record and one filled with blanks. If numbers are read from an empty record they will simply be zero.

Unformatted Sequential Files

Unformatted sequential files are often used as to transfer data from one program to another. They are
also suitable for scratch files, i.e. those used temporarily during program execution. The only limit on the
length of unformatted records is that set by the operating system; most systems allow records to contain a
few thousand data items at least. TheOPENstatement must specify the file format, but the default access
method is “sequential”. EachREADor WRITEstatement transfers one unformatted record.

For example, these statements open an existing unformatted file and read two records from it:

OPEN(UNIT=15, FILE=’BIN’, STATUS=’OLD’, FORM=’UNFORMATTED’)
READ(15) HEIGHT, LENGTH, WIDTH
READ(15) ARRAYP, ARRAYQ

BACKSPACEandREWINDstatements may generally be used on all unformatted sequential files.
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Unformatted Direct-access Files

Since direct-access files are readable only by machine, it seems sensible to use unformatted records
to maximise efficiency. TheOPENstatement must specifyACCESS=’DIRECT’ and also specify the
record length. Unfortunately the units used to measure the length of a record are not standardised: some
systems measure them in bytes, others in numerical storage units, i.e. the number of real or integer
variables a record can hold (see section 5.1). This is a minor obstacle to portability and means that you
may need to know how many bytes your machine uses for each numerical storage unit, although this
is just about the only place in Fortran where this is necessary. Most systems will allow you to open an
existing file only if the record length is the same as that used when the file was created.

EachREADandWRITEstatement transfers exactly one record and must specify the number of that
record: an integer value from one upwards. The record length must not be greater than that declared in
theOPENstatement; if an output record is not completely filled the remainder is undefined.

To illustrate how direct-access files can be used, here is a complete program which allows a very
simple data-base, such as a set of stock records, to be examined. Assuming that the record length is
measured in numerical storage units of 4 bytes, the required record length in this case can be computed
as follows:

NAME 1 CHARACTER*10 variable 10 chars = 10 bytes.
STOCK 1 INTEGER variable 1 unit = 4 bytes
PRICE 1 REAL variable 1 unit = 4 bytes

The total record length is 18 bytes or 5 numerical storage units (rounding up to the next integer).

PROGRAM DBASE1
INTEGER STOCK, NERR
REAL PRICE
CHARACTER NAME*10

*Assume record length in storage units holding 4 chars each.
OPEN(UNIT=1, FILE=’STOCKS’, STATUS=’OLD’,

$ ACCESS=’DIRECT’, RECL=5)
100 CONTINUE
*Ask user for part number which will be used as record number.

WRITE(UNIT=*,FMT=*)’Enter part number (or zero to quit):’
READ(UNIT=*,FMT=*) NPART
IF(NPART .LE. 0) STOP
READ(UNIT=1, REC=NPART, IOSTAT=NERR) NAME, STOCK, PRICE
IF(NERR .NE. 0) THEN

WRITE(UNIT=*,FMT=*)’Unknown part number, re-enter’
GO TO 100

END IF
WRITE(*,115)STOCK, NAME, PRICE

115 FORMAT(1X,’Stock is’,I4, 1X, A,’ at ’, F8.2, ’ each’)
GO TO 100
END

The typical output record of the program will be of the form:
Stock is 123 widgets at 556.89 each

This program could be extended fairly easily to allow the contents of the record to be updated as the
stock changes.
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Formatted Direct-access Files

Formatted direct-access files are slightly more portable than the unformatted form because their record
length is always measured in characters. Otherwise there is little to be said for them. TheOPENstate-
ment must specify bothACCESS=’DIRECT’ andFORM=’FORMATTED’and eachREADandWRITE
statement must contain both format and record-number identifiers. List-directed transfers are not permit-
ted. If the format specification requires more than one record to be used, these additional records follow
on sequentially from that specified by REC=. It is an error to try to read beyond the end of a record, but
an incompletely filled record will be padded out with blanks.

10.3 Internal Files

An internal file is an area of central memory which can be used as if it were a formatted sequential file.
It exists, of course, only while the program is executing. Internal files are used for a variety of purposes,
particularly to carry out data conversions to and from character data type. Some earlier versions of
Fortran includedENCODEandDECODEstatements: the internal fileREAD(which replacesDECODE)
and internal fileWRITE(which replacesENCODE) are simpler, more flexible, and entirely portable.

An internal file can only be used withREADandWRITEstatements and an explicit format specifica-
tion is required: list-directed transfers are not permitted. The unit must have character data type but it
can be a variable, array element, substring, or a complete array. If it is a complete array then each array
element constitutes a record; in all other cases the file only consists of one record. Data transfers always
start at the beginning of the internal file, that is an implicit rewind is performed each time. The record
length is the length of the character item. It is illegal to try to transfer more characters than the internal
file contains, but if a record of too few characters is written it will be padded out with blanks. TheEND=
andIOSTAT= mechanisms can be used to detect the end-of-file.

An internal fileWRITEis typically used to convert a numerical value to a character string by using a
suitable format specification, for example:

CHARACTER*8 CVAL
RVALUE = 98.6
WRITE(CVAL, ’(SP, F7.2)’) RVALUE

TheWRITEstatement will fill the character variable CVAL with the characters’ +98.60 ’ (note that
there is one blank at each end of the number, the first because the number is right-justified in the field of
7 characters, the second because the record is padded out to the declared length of 8 characters).

Once a number has been turned into a character-string it can be processed further in the various ways
described in section 7. This makes it possible, for example, to write numbers left-justified in a field,
or mark negative numbers with with “DR” (as in bank statements) in or even use a pair of parentheses
(as in balance-sheets). With suitable arithmetic you can even output values in other number-bases such
as octal or hexadecimal. Even more elaborate conversions may be achieved by first writing a suitable
format specification into a character string and then using that format to carry out the desired conversion.

Internal fileREADstatements can be used to decode a character string containing a numerical value.
One obvious application is to handle the user input to a command-driven program. Suppose the command
line consists of a word followed, optionally, by a number (in integer or real format), with at least one
blank separating the two. Thus the input commands might be something like:

UP 4
RIGHT 123.45
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A simple way to deal with this is to read the whole line into a character variable and then use the INDEX
function to locate the first blank. The preceding characters constitute the command word, those following
can be converted to a real number using an internal fileREAD. For example:

CHARACTER CLINE*80
* . . .
100 WRITE(UNIT=*,FMT=*)’Enter command: ’

READ(*, ’(A)’, IOSTAT=KODE) CLINE
IF(KODE .NE. 0) STOP
K = INDEX(CLINE, ’ ’)

*The command word is now in CLINE(1:K-1); Assume the
* number is in the next 20 characters: read it into RVALUE

READ(CLINE(K+1:), ’(BN,F20.0)’, IOSTAT=KODE)
RVALUE

IF(KODE .NE. 0) THEN
WRITE(UNIT=*,FMT=*)’Error in number: try again’
GO TO 100

END IF

Note that the edit descriptorBN is needed to ensure that any trailing blanks will be ignored; theF20.0
will then handle any real or integer constant anywhere in the next 20 characters. A field of blanks will
be converted into zero.

10.4 Pre-Connected Files

Terminal Input/Output

Many programs are interactive and need to access the user’s terminal. Although the terminal is a file
which can be connected with anOPENstatement, its name is system-dependent. Fortran solves the
problem by providing two special files usually called the standard input file and the standard output file.
These files are pre-connected, i.e. noOPENstatement is needed (or permitted). They are both formatted
sequential files and, on interactive systems, handle input and output to the terminal. You canREADand
WRITEfrom these files simply by having an asterisk “* ” as the unit identifier. These files make terminal
I/O simple and portable; examples of their use can be found throughout this book.

When a program is run in batch mode most systems arrange for standard output to be diverted to a
log file or to the system printer. There may be some similar arrangement for the standard input file.

The asterisk notation has one slight drawback: the unit numbers is often specified by an integer
variable so that the source of input or destination of output can be switched from one file to another
merely be altering the value of this integer. This cannot be done with the standard input or output files.

Other Pre-connected Files

In order to retain compatibility with Fortran66, many systems provide other pre-connected files. It used
to be customary to have unit 5 connected to the card-reader, and unit 6 to the line printer. Other units
were usually connected to disc files with appropriate names: thus unit 39 might be connected to a file
calledFTN039.DAT or evenTAPE39. These pre-connections are completely obsolete and should be
ignored: anOPENstatement can supersede a pre-connection on any numbered unit. Unfortunately these
obsolete pre-connections can have unexpected side effects. If you forget to open an output file you may
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find that your program will run without error but that the results will be hidden on a file with one of these
special names.

10.5 Error and End-Of-File Conditions

Errors in most executable statements can be prevented by taking sufficient care in writing the program,
but in I/O statements errors can be caused by events beyond the control of the programmer: for example
through trying to open a file which no longer exists, writing to a disc which is full, or reading a data file
which has been created with the wrong format. Since I/O statements are so vulnerable, Fortran provides
an error-handling mechanism for them. There are actually two different ways of handling errors which
may be used independently or in combination.

Firstly, you can include in the I/O control list an item of the form:
IOSTAT=integer-variable

When the statement has executed the integer variable (or array element) will be assigned a value repre-
senting the I/O status. If the statement has completed successfully this variable is set to zero, otherwise
it is set to some other value, a positive number if an error has occurred, or a negative value if the end of
an input file was detected. Since the value of this status code is system-dependent, in portable software
the most you can do is to compare it to zero and, possibly, report the actual error code to the user. Thus:

100 WRITE(UNIT=*, FMT=*)’Enter name of input file: ’
READ(UNIT=*, FMT=*) FNAME
OPEN(UNIT=INPUT, FILE=FNAME, STATUS=’OLD’, IOSTAT=KODE)
IF(KODE .NE. 0) THEN

WRITE(UNIT=*,FMT=*)FNAME, ’ cannot be opened’
GO TO 100

END IF

This simple error-handling scheme makes the program just a little more user-friendly: if the file cannot
be opened, perhaps because it does not exist, the program asks for another file-name.

The second method is to include an item of the form
ERR=label

which causes control to be transferred to the statement attached to that label in the event of an error. This
must, of course, be an executable statement and in the same program unit. For example:

READ(UNIT=IN, FMT=*, ERR=999) VOLTS, AMPS
WATTS = VOLTS * AMPS

* rest of program in here . . . . . and finally
STOP

999 WRITE(UNIT=*,FMT=*)’Error reading VOLTS or AMPS’
END

This method has its uses but is open to the same objections as theGO TOstatement: it often leads to
badly-structured programs with lots of arbitrary jumps.

By using bothIOSTAT= andERR=in the same statement it is possible to find out the actual error
number and jump to the error-handling code. The presence of either keyword in an I/O statement will
allow the program to continue after an I/O error; on most systems it also prevents an error message being
issued.
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TheERR=andIOSTAT= items can be used in all I/O statements. Professional programmers should
make extensive use of these error-handling mechanisms to enhance the robustness and user-friendliness
of their software.

There is one fairly common mistake which does not count as an errors for this purpose: if you write
a number to a formatted record using a field width too narrow to contain it, the field will simply be filled
with asterisks.

If an error occurs in a data transfer statement then the position of the file becomes indeterminate. It
may be quite difficult to locate the offending record if an error is detected when transferring a large array
or using a large number of records.

End-of-file Detection

A READstatement which tries to read a record beyond the end of a sequential or internal file will trigger
the end-of-file condition. If an item of the form:IOSTAT=integer-variable is included in its
control-list then the status value will be returned as some negative number. If it includes an item of the
form: END=label then control is transferred to the labelled statement when the end-of-file condition is
detected.

TheEND=keyword may only be used inREADstatements, but it can be used in the presence of both
ERR=and IOSTAT= keywords. End-of-file detection is very useful when reading a file of unknown
length, but some caution is necessary. If you read several records at a time from a formatted file there is
no easy way of knowing exactly where the end-of-file condition occurred. The data list items beyond that
point will have their values unaltered. Note also that there is no concept of end-of-file on direct-access
files: it is simply an error to read a record which does not exist, whether it is beyond the “end” of the file
or not.

Most systems provide some method for signalling end-of-file on terminal input: those based on the
ASCII code often use the character ETX which is usually produced by pressing control/Z on the keyboard
(or EOT which is control/D). After an end-of-file condition has been raised in this way it may persist,
preventing further terminal input to that program.

Formally, the Fortran Standard only requires Fortran systems to detect the end-of-file condition on
external files if there is a special “end-file” record on the end. TheEND FILE statement is provided
specifically to write such a record. In practice, however, virtually all Fortran systems respond perfectly
well when you try to read the first non-existent record, so that theEND FILE statement is effectively
obsolete and is not recommended for general use.

10.6 Format Specifications

Every READ orWRITEstatement which uses a formatted external file or an internal file must include a
format identifier. This may have any of the following forms:

FMT=* This specifies a list-directed transfer (and is only permitted for external sequential files). De-
tailed rules are given in section 10.10 below.

FMT=label The label must be attached to a FORMAT statement in the same program unit which provides
the format specification.

FMT=char-exp The value of the character expression is a complete format specification.

FMT=char-array The elements of the character array contain the format specification, which may oc-
cupy as many elements of the array as are necessary.
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Note that the charactersFMT=may be omitted if it is the second item in the I/O control list and if the
unit identifier withUNIT= omitted comes first.

A format specification consists a pair of parentheses enclosing a list of items called edit descriptors.
Any blanks before the left parenthesis will be ignored and (except in a FORMAT statement) all characters
after the matching right parenthesis are ignored.

In most cases the format can be chosen when the program is written and the simplest option is to use
a character constant:

WRITE(UNIT=LP, FMT=’(1X,A,F10.5)’) ’Frequency =’, HERTZ
Alternatively you can use aFORMATstatement:

WRITE(UNIT=LP, FMT=915) ’Frequency =’, HERTZ
915 FORMAT(1X, A, F10.5)

This allows the same format to be used by more than one data-transfer statement. TheFORMATstate-
ment may also be the neater form if the specification is long and complicated, or if character-constant
descriptors are involved, since the enclosing apostrophes have to be doubled up if the whole format is
part of another character constant.

It is also possible to compute a format specification at run-time by using a suitable character expres-
sion. By this means you could, for example, arrange to read the format specification of a data file from
the first record of the file. The program fragment below shows how to output a real number in fixed-point
format (F10.2) when it is small, changing to exponential format (E18.6) when it is larger. A threshold of
a million has been chosen here.

CHARACTER F1*(*), F2*12, F3*(*)
*Items F1, F2, F3 hold the three parts of a format specification.
*F1 and F3 are constants, F2 is a variable.

PARAMETER (F1 = ’(1X,’’Peak size =’’,’)
PARAMETER (F3 = ’)’)

*... calculation of PEAK assumed to be in here
IF(PEAK .LT. 1.0E6) THEN

F2 = ’F10.2’
ELSE

F2 = ’E18.6’
END IF
WRITE(UNIT=*, FMT=F1//F2//F3) PEAK

Note that the apostrophes surrounding the character constant’Peak size =’ have been doubled in
thePARAMETERstatement because they are inside another character constant. Here are two examples
of output records, with blanks shown explicitly:

Peak size = 12345.67
Peak size = 0.987654E+08

FORMATstatement

The FORMATstatement is classed as non-executable and can, in principle, go almost anywhere in the
program unit. AFORMATstatement can, of course, be continued so its maximum length is 20 lines. The
sameFORMATstatement can be used by more than one data transfer statement and, unless it contains
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character constant descriptors, used for both input and output. Since it is very easy to make a mistake
in matching the items in a data transfer list with the edit descriptors in the format specification, it makes
sense to put theFORMATstatement as close as possible to theREADandWRITEstatements which use
it.

10.7 Format Edit Descriptors

There are two types of edit descriptor: data descriptors and control descriptors.

A data descriptor must be provided for each data item transferred by aREADor WRITEstatement;
the descriptors permitted depend on the data type of the item. The data descriptors all start with a letter
indicating the data type followed by an unsigned integer denoting the field width, for example:I5
denotes an integer field 5 characters wide,F9.2 denotes a floating-point field 9 character wide with 2
digits after the decimal point. Full details of all the data descriptors are given in the next section.

The control descriptors are used for a variety of purposes, such as tabbing to specific columns, pro-
ducing or skipping records, and controlling the transfer of subsequent numerical data. They are described
fully in section 10.9.

Note that only literal constants are permitted within format specifications, not named constants or
variables.

10.8 Format Data DescriptorsA, E, F, G, I, L

A data descriptor must be provided for each data item present (or implied) in a data transfer list. Real,
double precision, and complex items may use any of the E, F, or G descriptors but in all other cases the
data type must match. Two floating-point descriptors are needed for each complex value.

Data type Data descriptors
Integer Iw, Iw.m
Real, Double Precision, or ComplexEw.d, Ew.dEe, Fw.d, Gw.d, Gw.dEe
Logical Lw
Character A, Aw

The lettersw, m, d , ande used with these data descriptors represent unsigned integer constants;w
ande must be greater than zero.

w is the total field width.
m is the minimum number of digits produced on output.
d is the number of digits after the decimal point.
e is the number of digits used for the exponent.

Any data descriptor can be preceded by a repeat-count (also an unsigned integer), thus:
3F6.0 is equivalent to F6.0,F6.0,F6.0

This facility is particularly useful when handling arrays.

General Rules for Numeric Input/Output

Numbers are always converted using the decimal number base: there is no provision in Standard Fortran
for transfers in other number bases such as octal or hexadecimal. More complicated conversions such as
these can be performed with the aid of internal files.
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On output numbers are generally right-justified in the specified field; leading blanks are supplied
where necessary. Negative values are always preceded by a minus sign (for which space must be allowed
in the field); zero is always unsigned; theSPandSSdescriptors control whether positive numbers are to
be preceded by a plus sign or not. A number which is too large to fit into its field will appear instead as
a set of w asterisks.

On input numbers should be right-justified in each field. All forms of constant permitted in a Fortran
program can safely be used in an input field of the corresponding type, as long there are no embedded or
trailing blanks. Leading blanks are always ignored; a field which is entirely blank will be read as zero.
The treatment of embedded and trailing blanks can be controlled with theBNandBZ descriptors. The
rules here are another relic of very early Fortran systems.

When reading a file which has been connected by means of anOPENstatement (provided it does not
containBLANK=’ZERO’ ) all embedded and trailing blanks in numeric input fields are treated as nulls,
i.e. they are ignored. In all other cases, such as input from the standard pre-connected file or from an
internal file, embedded and trailing blanks are treated as zeros. These defaults can be altered with theBN
andBZ control descriptors. It is hard to imagine any circumstances in which it is desirable to interpret
embedded blanks as zeros; the default settings are particularly ill-chosen since numbers entered by a user
at a terminal are often left-justified and may appear to be padded out with zeros. Errors from this source
can be avoided by using BN at the beginning of all input format specifications.

Integer Data (Iw, Iw.m )

An integer value written with Iw appears right-justified in a field of w characters with leading blanks.
Iw.m is similar but ensures that at least m digits will appear even if leading zeros are necessary. This is
useful, for instance, to output the times in hours and minutes:

NHOURS = 8
MINUTE = 6
WRITE(UNIT=*, FMT=’(I4.2, I2.2)’) NHOURS, MINUTE

The output record (with blanks shown explicitly) is:

0806

On inputIw andIw.m are identical. Note that an integer field must not contain a decimal point, expo-
nent, or any punctuation characters such as commas.

Floating Point Data (Ew.d, Ew.dEe, Fw.d, Gw.d, Gw.dEe )

Data of any of the floating-point types (Real, Double Precision, and Complex) may be transferred using
any of the descriptorsE, F, or G. For each complex number two descriptors must be provided, one for
each component; these components may be separated, if required, by control descriptors. On output
numbers are rounded to the specified number of digits. All floating-point data transfers are affected
by the setting of the scale-factor; this is initially zero but can be altered by theP control descriptor, as
explained in the section 10.9.

Output usingFw.d produces a fixed-point value in a field of w characters with exactlyd digits after
the decimal point. The decimal point is present even ifw is zero, so that if a sign is produced there is
only space for, at most,w-2 digits before the decimal point. If it is really important to suppress the
decimal point in numbers with no fractional part one way is to use a format specification of the form
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(F15.0,TL1 )... so that the next field starts one place to the left and over-writes the decimal point.
Another way is to copy the number to an integer variable and write it with an I descriptor, but note the
limited range of integers on most systems.F format is especially convenient in tabular layouts since the
decimal points will line up in successive records, but it is not suitable for very large or small numbers.

Output withEw.d produces a number in exponential or “scientific” notation. The mantissa will be
between 0.1 and 1 (if the scale-factor is zero). The formEw.dEe specifies that there should be exactlye
digits in the exponent. This form must be used if the exponent will have more than three digits (although
this problem does not arise on machines on which the number range is too small).E format can be used
to handle numbers of any magnitude. The disadvantage is that exceptionally large or small values do not
stand out very well in the resulting columns of figures.

Gw.d is the general-purpose descriptor: if the value is greater than 0.1 but not too large to fit it the
field it will be written using a fixed-point format withd digits in total and with 4 blanks at the end of the
field; otherwise it is equivalent toEw.d format. The formGw.dEe allows you to specify the length of
the exponent; if a fixed-point format is chosen there aree+2 blanks at the end.

The next example shows the different properties of these three formats on output:

X = 123.456789
Y = 0.09876543
WRITE(UNIT=*, FMT=’(E12.5, F12.5, G12.5)’) X,X,X, Y,Y,Y

produces two records (witht representing the blank):

0.12346E+03 123.45679 123.46
0.98766E-01 0.09877 0.98766E-01

On input all theE, F, andG descriptors have identical effects: if the input field contains an explicit
decimal point it always takes precedence, otherwise the last d digits are taken as the decimal fraction. If
an exponent is used it may be preceded byE or D (but the exponent letter is optional if the exponent is
signed). If the input field provides more digits than the internal storage can utilise, the extra precision is
ignored. It is usually best to use (Fw.0 ) which will cope with all common floating-point or even integer
forms.

Logical Data (Lw)

When a logical value is written with Lw the field will contain the letterT or F preceded by(w-1) blanks.
On input the field must contain the letterT or F; the letter may be preceded by a decimal point and any
number of blanks. Characters after theT or F are ignored. Thus the forms.TRUE. and.FALSE. are
acceptable.

Character Data (A and Aw)

If the A descriptor is used without an explicit field-width then the length of the character item in the data-
transfer list determines it. This is generally what is required but note that the position of the remaining
items in the record will change if the length of the character item is altered.

If it is important to use fixed column layouts the formAwmay be preferred: it always uses a field w
characters wide. On output if the actual length len is less than w the value is right-justified in the field and
preceded by(w-len) blanks; otherwise only the firstw characters are output, the rest are ignored. On
input if the length len is less than w then the right-most len characters are used, otherwise w characters
will be read into the character variable with(len-w) blanks appended.
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10.9 Format Control Descriptors

Control descriptors do not correspond to any item in the data-transfer list: they are obeyed when the for-
mat scan reaches that point in the list. A format specification consisting of nothing but control descriptors
is valid only if theREADor WRITEstatement has an empty data-transfer list.

Control Function Control Descriptor
Skip to next record /
Move to specified column position Tn, TLn, TRn, nX
Output a character constant ’any char string’
Stop format scan if data list empty :
Control+ before positive numbers SP, SS, S
Treat blanks as nulls/zeros BN, BZ
Set scale factor for numeric transferskP

Heren andk are integer constants,k may have a sign but n must be non-zero and unsigned. The
control descriptors such asSP, BN, kP affect all numbers transferred subsequently. The settings are
unaffected by forced reversion but the system defaults are restored at the start of the nextREADor
WRITEoperation.

Any list of edit descriptors may be enclosed in parentheses and preceded by an integer constant as a
repetition count, e.g.

2(I2.2, ’-’),I2.2
is equivalent to

I2.2, ’-’, I2.2, ’-’, I2.2
These sub-lists can be nested to any reasonable depth, but the presence of internal pairs of parentheses
can have special effects when forced reversion takes place, as explained later.

Commas may be omitted between items in the following special cases: either side of a slash (/ ) or
colon (: ) descriptor, and after a scale-factor (kP) if it immediately precedes aD, E, F, or Gdescriptor.

Record Control (/ )

The slash descriptor (/ ) starts a new record on output or skips to a new record on input, ignoring anything
left on the current record. On a text file a record normally corresponds to a line of text. Note that a
formatted transfer always process at least one record: if the format contains N slashes then a total of
(N+1) records are processed. With N consecutive slashes in an output format there will be (N-1) blank
lines; on input then (N-1) lines will be ignored. Note that if a formatted sequential file is sent to a
printer the first character of every record may be used for carriage-control (see section 10.11). It is good
practice to put1X at the beginning of every format specification and after every slash to ensure single
line spacing. Here, for example, there is a blank line after the column headings.

WRITE(UNIT=LP, FMT=95) (NYEAR(I), POP(I), I=1,NYEARS)
95 FORMAT(1X,’Year Population’, //, 100(1X, I4, F12.0, /))

Column Position Control (Tn, TLn, TRn, nX )

These descriptors cause subsequent values to be transferred starting at a different column position in the
record. They can, for instance, be used to set up a table with headings positioned over each column. In
all these descriptors the value of n must be 1 or more. Columns are numbered from 1 on the left (but
remember that column 1 may be used for carriage-control if the output is sent to a printer).
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Tn causes subsequent output to start at column n.
TRn causes a shift to the right by n columns.
TLn causes a shift to the left by n columns (but it will not move the position to the left

of column 1).
nX is exactly equivalent to TRn.

On inputTLn can be used to re-read the same field again, possibly using a different data descriptor.
On output these descriptors do not necessarily have any direct effect on the record: they do not cause
any existing characters to be replaced by blanks, but when the record is complete any column positions
embedded in the record which are still unset will be replaced by blanks. Thus:

WRITE(UNIT=LP, FMT=9000)
9000 FORMAT(’A’, TR1000, TL950, ’Z’)

will cause a record of 52 characters to be output, middle 50 of them blanks.

Character Constant Output (’string’ )

The character constant descriptor can only be used withWRITEstatements: the character string is simply
copied to the output record. As in all character constants an apostrophe can be represented in the string
by two successive apostrophes, and blanks are significant.

Sign Control (SP, SS, S )

After SP has been used, positive numbers will be written with a leading+ sign; afterSS has been used
the+ sign is suppressed. TheS descriptor restores the initial default which is system-dependent. These
descriptors have no effect on numerical input. The initial default is restored at the start of every new
formatted transfer.

Blank Control ( BN, BZ)

After BN is used all embedded and trailing blanks in numerical input fields are treated as nulls, i.e.
ignored. AfterBZ they are treated as zeros. These descriptors have no effect on numerical output. The
initial default, which depends on theBLANK=item in theOPENstatement, is restored at the start of every
new formatted transfer.

Scale Factor Control (kP)

The scale factor can be used to introduce a scaling by any power of 10 between internal and external
values whenE, F , or Gdescriptors are used. In principle this could be useful when dealing with data
which are too large, or too small, for the exponent range of the floating-point data types of the machine,
but other problems usually make this impracticable. The scale factor can result in particularly insidious
errors when used withF descriptors and should be avoided by all sensible programmers. The rules are
as follows.

The initial scale factor in each formatted transfer is zero. If the descriptorkP is used, wherek is
a small (optionally signed) integer, then it is set tok . It affects all subsequent floating point values
transferred by the statement. On input there is no effect if the input field contains an explicit exponent,
otherwise
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internal-value= external-value/ 10k

On output the effect depends on the descriptor used. WithE descriptors the decimal point is movedk
places to the right and the exponent reduced byk so the effective value is unaltered. WithF descriptors
there is always a scaling:

external-value= internal-value* 10k

With Gdescriptors the scale-factor is ignored if the value is in the range forF-type output, otherwise it
has the same effects as withE descriptors.

Scan Control (: ) and Forced Reversion

The list of edit descriptors is scanned from left to right (apart from the effect of parentheses) starting at
the beginning of the list whenever a new data transfer statement is executed. The action of the I/O system
depends jointly on the next edit descriptor and the next item in the data-transfer list. If a data descriptor
comes next then the next data item is transferred if one exists, otherwise the format scan comes to an end.
If a colon descriptor (: ) comes next and the data-transfer list is empty the format scan ends, otherwise
the descriptor has no effect. If any other control descriptor comes next then it is obeyed whether or not
the data-transfer list is empty.

If the format list is exhausted when there are still more items in the data-transfer list then forced
reversion occurs: the file is positioned at the beginning of the next record and the format list is scanned
again, starting at the left-parenthesis matching the last preceding right-parenthesis. If this is preceded
by a repeat-count then this count is re-used. If there is no preceding right-parenthesis then the whole
format is re-used. Forced reversion has no effect upon the settings for scale-factor, sign, or blank control.
Forced reversion can be useful when reading or writing an array contained on a sequence of records since
it is not necessary to know how many records there are in total, but when producing printed output it is
easy to forget that a carriage-control character is required for each record, even those produced by forced
reversion.

10.10 List-Directed Formatting

List-directed output uses a format chosen by the system according to the data type of the item. The exact
layout is system-dependent, but the general rules are as follows.

List-directed Output

EachWRITEstatement starts a new record; additional records are produced when necessary. Each record
starts with a single blank to provide carriage-control on printing. Arithmetic data types are converted to
decimal values with the number of digits appropriate for the internal precision; integer values will not
have a decimal point, the system may choose fixed-point or exponential (scientific) form for floating-
point values depending on their magnitude. Complex values are enclosed in parentheses with a comma
separating the two parts.

Logical values are output as a single letter, eitherT or F. Character values are output without enclosing
apostrophes; if a character string is too long for one record it may be continued on the next. Except for
character values, each item is followed by at least one blank or a comma (or both) to separate it from the
next value.
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List-directed Input

The rules for List-directed input effectively allow free-format entry for numerical data. EachREAD
statement starts with a new record and reads as many records as are necessary to satisfy its data-transfer
list. The input records must contain a suitable sequence of values and separators.

The values may be given in any form which would be acceptable in a Fortran program for a constant
of the corresponding type, except that embedded blanks are only permitted in character values. When
reading a real or double-precision value an integer constant will be accepted; when reading a logical
value only the letterT or F is required (a preceding dot and any following characters will be ignored).
Note that a character constant must be enclosed in apostrophes and a complex constant must be enclosed
in parentheses with a comma between the two components. If a character constant is too long to fit on
one record it may be continued on to the next; the two parts of a complex constant may also be given on
two records.

The separator between successive values must be one or more blanks, or a comma, or both. A new
record may start at any point at which a blank would be permitted.

If several successive items are to have the same value a repetition factor can be used: this has the form
n* constantwheren is an unsigned integer. Blanks are not allowed on either side of the asterisk.

Two successive commas represent a null value: the corresponding variable in theREADstatement has
its value unchanged. It is also possible to use the form n* to represent a set of n null values.

A slash (/ ) may be used instead of an item separator; it has the effect of completing the currentREAD
without further input; all remaining items in its data transfer list are unchanged in value.

List-directed output files are generally compatible with list-directed input, unless they contain char-
acter items, which will not have the enclosing apostrophes which are required on input.

10.11 Carriage-Control and Printing

Although a format specification allows complete control over the layout of each line of text, it does not
include any way of controlling pagination. The only way to do this is by using a unique and extraordinary
mechanism dating back to the earliest days of Fortran. Even if you are not concerned with pagination
you still need to know about the carriage-control convention since it is liable to affect every text file you
produce.

Whenever formatted output is sent to a “printer”, the first character of every record is removed and
used to control the vertical spacing. This carriage-control character must be one of the four listed in the
the table below.

Character Vertical spacing before printing
blank Advance to next line

0 Advance two lines
1 Advance to top of next page
+ No advance, i.e. print on same line

An empty record is treated as if it started with a single blank. For example, these statements start a
new page with a page number at the top and a title on the third line:

WRITE(LP, 55) NUMBER, ’Report and Accounts’
55 FORMAT(’1PAGE’, I4, /, ’0’, A)
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This carriage-control convention is an absurd relic which causes a multitude of problems in practice.
Firstly, systems differ on what they call a “printer”: it may or may not apply to visual display terminals
or to text initially saved on a disc file and later printed out. Some operating systems have a special file
type for Fortran formatted output which is treated differently by printers (and terminals). Others have
been known to chop off the first character of all files sent to the system printer so that special utilities are
needed to print ordinary text.

To be on the safe side you should always provide an explicit carriage-control character at the start of
each format specification and after each slash. Special care is needed in formats which use forced rever-
sion. Normal single spacing is obtained with a blank, conveniently produced by the1X edit descriptor.
If you forget and accidentally print a number at the start of each record with a leading digit1 then each
record will start a new page.

The effect of+ as a carriage-control character would be more useful if its effects were more pre-
dictable. Some devices over-print the previous record, allowing the formation of composite characters
(for example overprinting equals with a slash could give you a not-equals sign), while others append to it,
and some (including many visual display terminals) erase what was there before. Obviously you cannot
rely on this and in portable software there is no alternative but to ignore the+ case altogether.

Standard Fortran can only use the four carriage-control characters listed in the table but many systems
use other symbols for special formatting purposes, such as setting vertical spacing, changing fonts, and
so on. One extension which is widely available is the use of the currency symbol$ to suppress carriage-
return at the end of the line. This can be useful when producing terminal prompts as it allows the reply
to be entered on the same line. There is, unfortunately, no way of doing this in Standard Fortran.

The rules for list-directed output ensure that the lines are single-spaced by requiring at least one blank
at the start of every record.

10.12 Input/Output Statements and Keywords

The I/O statements fall into three groups:

• The data transfer statementsREADandWRITE.

• The file connection statementsOPEN, CLOSE,andINQUIRE.

• The file positioning statementsREWINDandBACKSPACE.

All these statements have a similar general form (except that only theREADandWRITEstatements
can have a data-transfer list):

READ(control-list ) input-list
WRITE( control-list ) output-list

The items in each list are separated by commas. Those in the control list are usually specified by key-
words, in which case the order does not matter, although it is conventional to have the unit identifier first.
For compatibility with Fortran66, if the unit identifier does come first then the keywordUNIT= may be
omitted. Furthermore, when this keyword is omitted inREADandWRITEstatements and the format
identifier is second its keyword may also be omitted. Thus these two statements are exactly equivalent:

READ(UNIT=1, FMT=*, ERR=999) AMPS, VOLTS, HERTZ
READ(1, *, ERR=999) AMPS, VOLTS, HERTZ

Use of this abbreviated form is a matter of taste: for the sake of clarity the keywords will all be shown in
other examples.
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Many of the keywords in the control-list can take a character expression as an argument: in such cases
any trailing blanks in the value will be ignored. This makes it easy to use character variables to specify
file names and characteristics.

There is one general restriction on expressions used in all I/O statements: they must not call external
functions which themselves execute further I/O statements. This restriction avoids the possibility of
recursive calls to the I/O system.

10.13 OPENStatement

TheOPENstatement is used to connect a file to an I/O unit and describe its characteristics. It can open an
existing file or create a new one. If the unit is already connected to another file then this is closed before
the new connection is made, so that it is impossible to connect two files simultaneously to the same unit.
It is an error to try to connect more than one unit simultaneously to the same file. In the special case in
which the unit and file are already connected to each other, theOPENstatement may be used to alter the
properties of the connection, although in practice only theBLANK=(and sometimesRECL=) values can
be changed in this way.

The Fortran Standard does not specify the file position when an existing sequential file is opened.
Although most operating systems behave sensibly, in portable software aREWINDstatement should be
used to ensure that the file is rewound before you read it.

The general form of theOPENstatement is just:
OPEN(control-list )

Thecontrol-listcan contain any of the following items in any order:

UNIT= integer-expressionspecies the I/O unit number which must be zero or above; the upper limit is
system-dependent, typically 99 or 255. The unit identifier must always be given, there is no default
value.

STATUS=character-expressiondescribes or specifies the file status. The value must be one of:

’OLD’ The file must exist.
’NEW’ The file must not already exist, a new file is created.
’SCRATCH’ An unnamed temporary file is created; it is deleted automatically when the

program exits.
’UNKNOWN’ The effect is system-dependent, but usually means that an old file will be

used if one exists, otherwise a new file will be created.

The default value is’UNKNOWN’, but it is unwise to omit theSTATUSkeyword because the
effect of ’UNKNOWN’is so ill-defined.

FILE= character-expressionspecifies the file-name (but any trailing blanks will be ignored). The forms
of file-name acceptable are system-dependent: a complete file-specification on some operating
systems may include the device, user-name, directory path, file-type, version number etc. and may
require various punctuation marks to separate these. In portable software, where the name has to be
acceptable to a variety of operating systems, short and simple names should be used. Alternatively
theFILE= identifier may be a character variable (or array element) so that the user can choose a
file-name at run-time. There is no default for the file-name so one should be specified in all cases
unlessSTATUS=’SCRATCH’in which case the file must not be named.

ACCESS=character-expressionspecifies the file access method. The value may be either:
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’SEQUENTIAL’ a sequential file: this is the default.
’DIRECT’ a direct-access file: in this case theRECL=keyword is also needed.

FORM=character-expressionspecifies the record format. The value may be either:

’FORMATTED’ the default for a sequential file.
’UNFORMATTED’ the default for a direct-access file.

RECL=integer-expressionspecifies the record length. This must be given for a direct-access file but
not otherwise. The record-length is measured in characters for a formatted file, but is in system-
dependent units (often numeric storage units) for an unformatted file.

BLANK=character-expressionspecifies how embedded and trailing blanks in numerical input fields of
formatted files are to be treated (in the absence of explicit format descriptorsBNor BZ). The value
may be either:

’NULL’ blanks treated as nulls, i.e. ignored: the default.
’ZERO’ blanks treated as zeros.

The default value is likely to be the sensible choice in all cases.

IOSTAT=integer-variable(or array element) returns the I/O status code after execution of theOPEN
statement. This will be zero if no error has occurred, otherwise it will return a system-dependent
positive value.

ERR=label transfers control to the labelled executable statement in the same program unit in the event
of an error.

10.14 CLOSEStatement

TheCLOSEstatement is used to close a file and break its connection to a unit. The unit and the file (if it
still exists) are then free for re-use in any way. If the specified unit is not connected to a file the statement
has no effect. The general form of the statement is:

CLOSE(control-list )
where thecontrol-listmay contain the following items:

UNIT= integer-expressionspecifies the unit number to close (the same as in theOPENstatement).

STATUS=character-expressionspecifies the status of the file after closure. The expression must have a
value of either:’KEEP’ for the file to be preserved, or’DELETE’ for the file to be deleted after
closure. The default isSTATUS=’KEEP’ except for files opened withSTATUS=’SCRATCH’:
such files are always deleted after closure andSTATUS=’KEEP’ is not permitted.

IOSTAT=integer-variableandERR=label are both permitted, as in theOPENstatement (but not much
can go wrong with aCLOSEstatement).

10.15 INQUIRE Statement

TheINQUIRE statement can be used in two slightly different forms:
INQUIRE(UNIT= integer-expression, inquire-list)
INQUIRE(FILE= character-expression, inquire-list)

The first form, an inquire by unit, returns information about the unit and, if it is connected to a file, about
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the file as well. If it is not connected to a file then most of the arguments will be undefined or return a
value of’UNKNOWN’as appropriate.

The second form, inquire by file, can always be used to find out whether a named file exists, i.e. can
be opened by a Fortran program. Any trailing blanks in the character expression are ignored, and the
forms of file-name acceptable are, as in theOPENstatement, system-dependent. If the file exists and is
connected to a unit then much more information can be obtained.

The inquire-list may contain any of the items below. Note that all of them (except forERR=label )
return information by assigning a value to a named variable (or array element). The normal rules of
assignment statements apply, so that character items may have any reasonable length and will return a
value which is padded out with blanks to its declared length if necessary.

IOSTAT=integer-variableandERR=label can both be used in the same way as inOPENor CLOSE;
note that they detect errors during the execution of theINQUIRE statement itself, and do not
reflect the state of the file or unit which is the subject of the inquiry.

EXIST= logical-variablesets the variable (or array-element) to.TRUE. if the specified unit or file
exists, or.FALSE. if it does not. A unit exists if it has a number in the permitted range. A
file exists if it can be used in anOPENstatement. A file may appear not to exist merely because
the operating system prevents its use, for example because a password is needed or because some
other user has already opened it.

OPENED=logical-variablesets the variable to.TRUE. if the specified unit (or file) is currently con-
nected to a file (or unit) in the program.

NUMBER=integer-variablereturns the unit number of a file which is connected to the variable; otherwise
it becomes undefined.

NAME=character-variablereturns the file-name to the variable if the file has a name; if not it becomes
undefined. In the case of an inquire by file the name may not be the same as that specified using
FILE= (because a device-name or directory path may have been added) but the name returned
will always be suitable for use in anOPENstatement.

NAMED=logical-variablesets the variable to.TRUE. if the specified file has a name.

ACCESS=character-variablereturns the record access-method, either’SEQUENTIAL’ or ’DIRECT’
if the file is connected; if it is not connected the variable becomes undefined.

SEQUENTIAL=character-variablereturns’YES’ if the file can be opened for sequential access,’NO’
if it cannot, and’UNKNOWN’otherwise.

DIRECT=character-variablereturns’YES’ if the file can be opened for direct access,’NO’ if it
cannot, and’UNKNOWN’otherwise.

FORM=character-variablereturns’FORMATTED’ if the file is connected for formatted access, returns
’UNFORMATTED’if it is connected for unformatted access, or becomes undefined if there is no
connection.

FORMATTED=character-variablereturns’YES’ if formatted access is permitted,’NO’ if it is not, or
’UNKNOWN’otherwise.

UNFORMATTED=character-variable returns’YES’ if unformatted access is permitted,’NO’ if it is
not, or’UNKNOWN’otherwise.
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RECL=integer-variablereturns the record length if the file is connected for direct-access but becomes
undefined otherwise. Note that the units are characters for formatted files, but are system-depen-
dent for unformatted files.

NEXTREC=integer-variablereturns a number which is one higher than the last record read or written
if the file is connected for direct access. If it is connected for direct access but no records have
been transferred, the variable returns one. If the file is not connected for direct access the variable
becomes undefined.

BLANK=character-variablereturns’NULL’ or ’BLANK’ if the file is connected for formatted access
according to the way embedded and trailing blanks are to be treated. In other cases it becomes
undefined.

10.16 READand WRITEStatements

TheREADstatement reads information from one or more records on a file into a list of variables, array
elements, etc. TheWRITEstatement writes information from a list of items which may include variables,
arrays, and expressions and produces one or more records on a file. EachREADor WRITEstatement can
only transfer one record on an unformatted file but on formatted files, including internal files, more than
one record may be transferred, depending on the contents of the format specification.

The two statements have the same general form:
READ(control-list ) data-list
WRITE( control-list ) data-list

Thecontrol-list must contain a unit identifier; the other items may be optional depending on the type of
file. Thedata-list is also optional: if it is absent the statement transfers one record (or possibly more
under the control of a format specification).

Unit Identifier

This may have any of the following forms:

UNIT= integer-expressionThe value of the expression must be zero or greater and must refer to a valid
I/O unit.

UNIT=* For the standard pre-connected input or output file.

UNIT= internal-fileThe internal-file may be a variable, array-element, substring, or array of type char-
acter, see section 10.3.

Note that the keywordUNIT= is optional if the unit identifier is the first item in the control list.

Format Identifier

A format identifier must be provided when using a formatted (or internal) file but not otherwise. It may
have any of the following forms:

FMT=labelThe label of aFORMATstatement in the same program unit.

FMT=formatThe format may be a character expression or character array containing a complete format
specification (section 10.6).
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FMT=* For list-directed formatting (section 10.10).

Note that the keywordFMT=is also optional if the format identifier is the second item in the control list
and the first item is a unit identifier specified without its keyword.

Record Number

A record number identifier must be provided for direct-access files but not otherwise. It has the form:

REC=integer-expression

The record number must be greater than zero; forREADit must refer to a record which exists.

Error and End-of-file Identifiers

These may be provided in any combination, butEND=label is only valid when reading a sequential or
internal file. See 10.5 for more information.

END=label
ERR=label
IOSTAT=integer-variable

The data list of aREADstatement may contain variables, array-elements, character-substrings, or
complete arrays of any data type. An array-name without subscripts represents all the elements of the
array; this is not permitted for assumed-size dummy arguments in procedures (because the array size is
indeterminate). The list may also contain impliedDO-loops (explained below).

The data list of aWRITEstatement may contain any of the items permitted in aREADstatement
and in addition expressions of any data type. As in all I/O statements, expressions must not themselves
involve the execution of other I/O statements.

Implied DO-loops

The simplest and most efficient way to read or write all the elements of an array is to put its name,
unsubscripted, in the data-transfer list. In the case of a multi-dimensional array the elements will be
transferred in the normal storage sequence, with the first subscript varying most rapidly.

An implied-DO loop allows the elements to be transferred selectively or in some non-standard order.
The rules for an implied-DO are similar to that of an ordinaryDO-loop but the loop forms a single
item in the data-transfer list and is enclosed by a pair of parentheses rather than byDOandCONTINUE
statements. For example:

READ(UNIT=*, FMT=*) (ARRAY(I), I= IMIN, IMAX)
WRITE(UNIT=*, FMT=15) (M, X(M), Y(M), M=1,101,5)

15 FORMAT(1X, I6, 2F12.3)

A multi-dimensional array can be printed out in a transposed form. The next example outputs an array
X(100,5) but with 5 elements across and 100 lines vertically:

WRITE(UNIT=*, FMT=5) (I,I=1,5),
$ ((L,X(L,I),I=1,5),L=1,100)

5 FORMAT(1X,’LINE’, 5I10, 100(/,1X,I4, 5F10.2))
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The first loop writes headings for the five columns, then the double loop writes a line-number for each
line followed by five array elements. Note that the parentheses have to be matched and that a comma
is needed after the inner right-parenthesis since the inner loop is just an item in the list contained in the
outer loop.

The impliedDO-loop has the general form:
( data-list, loop-variable= start, limit, step)

where the rules for thestart, limit, andstepvalues are exactly as in an ordinaryDOstatement. Theloop-
variable(normally an integer) may be used within the data-list and this list may, in turn, include further
complete implied-DO lists.

If an error or end-of-file condition occurs in an impliedDO-loop then the loop-control variable will be
undefined on exit; this means that an explicitDO-loop is required to read an indefinite list of data records
and exit with knowledge of how many items were actually input.

10.17 REWINDand BACKSPACEStatements

These file-positioning statements may only be used on external sequential files; most systems will restrict
them to files stored on suitable peripheral devices such as discs or tapes.

REWINDrepositions a file to the beginning of information so that the nextREADstatement will read
the first record; if aWRITEstatement is used afterREWINDall existing records on the file are destroyed.
REWINDhas no effect if the file is already rewound. If aREWINDstatement is used on a unit which is
connected but does not exist (e.g. a pre-connected output file) it creates the file.

BACKSPACEmoves the file position back by one record so that the record can be re-read or over-
written. There is no effect if the file is already positioned at the beginning of information but it is an
error to back-space a file which does not exist. It is also illegal to back-space over records written by
list-directed formatting (because the number of records produced each time is system-dependent). A few
operating systems find it difficult to implement theBACKSPACEstatement directly and actually manage
it only by rewinding the file and spacing forward to the appropriate record. It is sometimes possible
to avoid backspacing a file by allocating buffers within the program and, for a formatted file, using the
internal fileREADandWRITEstatements.

These statements have similar general forms:
REWIND(control-list )
BACKSPACE(control-list )

where thecontrol-listmay contain:

UNIT=integer-expression
IOSTAT=integer-variable
ERR=label

The unit identifier is compulsory, the others optional. If only the unit identifier is used then (for compat-
ibility with Fortran66) an abbreviated form of the statement is permitted:

REWINDinteger-expression
BACKSPACEinteger-expression

where the integer expression identifies the unit number.



11 DATASTATEMENT 107

11 DATAStatement

TheDATAstatement is used to specify initial values for variables and array elements. TheDATAstate-
ment is non-executable, but in a main program unit it has the same effect as a set of assignment statements
at the very beginning of the program. Thus in a main program aDATAstatement like this:

DATA LINES/625/, FREQ/50.0/, NAME/’PAL’/

could replace several assignment statements:

LINES = 625
FREQ = 50.0
NAME = ’PAL’

This is more convenient, especially when initialising arrays, and efficient, since the work is done
when the program is loaded.

In a procedure, however, these two methods are not equivalent, especially in the case of items which
are modified as the procedure executes. ADATAstatement only sets the values once at the start of
execution, whereas assignment statements will do so every time the procedure is called.

It is important to distinguish between theDATAandPARAMETERstatements. TheDATAstatement
merely specifies an initial value for a variable (or array) which may be altered during the course of
execution. ThePARAMETERstatement specifies values for constants which cannot be changed without
recompiling the program. If, however, you need an array of constants, for which there is no direct support
in Fortran, you should use an ordinary array with aDATAstatement to initialise its elements (and take
care not to corrupt the contents afterwards).

11.1 Defined and Undefined Values

The value of each variable and array element is undefined at the start of execution unless it has been
initialised with a DATA statement. An undefined value may only be used in executable statements in
ways which cause it to become defined. An item can become defined by its use in any of the following
ways:

• on the left-hand side of an assignment statement,

• as the control variable of aDOstatement,

• in the input list of aREADstatement,

• as the internal file identifier of aWRITEstatement,

• as the I/O status identifier in an I/O statement,

• in anINQUIRE statement except as file or unit number,

• in a procedure call provided that the corresponding dummy argument is defined before the proce-
dure returns control.

An undefined variable must not be used in any other way. Errors caused by the inadvertent use of
undefined values are easy to make and sometimes have very obscure effects. It is important, therefore,
to identify every item which needs to be initialised and provide a suitable set ofDATAstatements.
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Modern operating systems often clear the area of memory into which they load a program to prevent
unauthorized access to the data used in the preceding job. A few operating systems preset their memory
to a bit-pattern which corresponds to an illegal numerical value: this is a very helpful diagnostic facility
since whenever an undefined variable is used in an expression it generates an error at run time. Other
systems merely set their memory to zero: this makes it more difficult to track down the use of indefined
variables and they may only come to light when a program is transported to another system. To rely on
undefined variables and arrays having an initial value of zero is to leave the program completely at the
mercy of changes to the operating system.

11.2 Initialising Variables

The simplest form of theDATAstatement consists of a list of the variable names each followed by a
constant enclosed in a pair of slashes:

DOUBLE PRECISION EPOCH
LOGICAL OPENED
CHARACTER INFILE*20
DATA EPOCH/1950.0D0/, OPENED/.TRUE./, INFILE/’B:OBS.DAT’/

Note thatDATAstatements must follow all specification statements. An alternative form of the state-
ment is to give first a complete list of names and then a separate list of constants:

DATA EPOCH, OPENED, INFILE / 1950.0D0, .TRUE., ’B:OBS.DAT’/

When there are many items to be initialised it is a matter of taste whether to use severalDATAstate-
ments or to use one with many continuation lines. It is, of course, illegal to have the same name appearing
twice.

Character variables can be initialised in sections using the substring notation if this is more conve-
nient:

CHARACTER*52 LETTER
DATA LETTER(1:26)/’ABCDEFGHIJKLMNOPQRSTUVWXYZ’/,

$ LETTER(27:) /’abcdefghijklmnopqrstuvwxyz’/

If the length of the character constant differs from that of the variable then the string is truncated or
padded with blanks as in an assignment statement. The type conversion rules of assignment statements
also apply to arithmetic items inDATAstatements.

11.3 Initialising Arrays

There are several ways of usingDATAstatements to initialise arrays, all of them simpler and more
efficient than the equivalent set ofDO-loops. Perhaps the most common requirement is to initialise all
the elements of an array: in this case the array name can appear without subscripts. If several of the
elements are to have the same initial value a repeat count can precede any constant:

REAL FLUX(1000)
DATA FLUX / 512*0.0, 488*-1.0 /



11 DATASTATEMENT 109

The total number of constants must equal the number of array elements. The constants correspond
to the elements in the array in the normal storage sequence, that is with the first subscript varying most
rapidly.

Named constants are permitted, but not constant expressions. The repeat count may be a literal or
named integer constant. To initialise a multi-dimensional array with parameterised array bounds it is
necessary to define another integer constant to hold the total number of elements:

PARAMETER (NX = 800, NY = 360, NTOTAL = NX * NY)
DOUBLE PRECISION SCREEN(NX,NY), ZERO
PARAMETER (ZERO = 0.0D0)
DATA SCREEN / NTOTAL * ZERO /

If only a few array elements are to be initialised they can be listed individually:

REAL SPARSE(50,50)
DATA SPARSE(1,1), SPARSE(50,50) / 1.0, 99.99999 /

The third, and most complicated, option is to use an implied-DO loop. This operates in much the
same way as an implied-DO in an I/O statement:

INTEGER ODD(10)
DATA (ODD(I),I=1,10,2)/ 5 * 43/
DATA (ODD(I),I=2,10,2)/ 5 * 0 /

This example has initialised all the odd numbered elements to one value and all the even numbered
elements to another. Note that the loop control variable (I in this example) has a scope which does not
extend outside the section of theDATAstatement in which it is used. Any integer variable may be used
as a loop control index in aDATAstatement without effects elsewhere; the value of I itself is not defined
by these statements.

When initialising part of a multi-dimensional array it may occasionally be useful to nestDO-loops
like this:

DOUBLE PRECISION FIELD(5,5)
DATA ((FIELD(I,J),I=1,J), J=1,5) / 15 * -1.0D0 /

This specifies initial values only for the upper triangle of the square array FIELD.

11.4 DATAStatements in Procedures

In procedures,DATAstatements perform a role for which assignment statements are no substitute. It
is quite often necessary to arrange for some action to be carried out at the start of the first call but not
subsequently, such as opening a file or initialising a variable or array which accumulates information
during subsequent calls.

If information is preserved in a local variable or array from one invocation to another aSAVEstate-
ment (described in section 9.11) is also needed. Indeed, in general any object initialised in aDATA
statement in a procedure also needs to be named in aSAVEstatement unless its value is never altered.

In the next example the procedure opens a data file on its first call, using a logical variable OPENED
to remember the state of the file.
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SUBROUTINE LOOKUP(INDEX, RECORD)
INTEGER INDEX
REAL RECORD
LOGICAL OPENED
SAVE OPENED
DATA OPENED / .FALSE. /

*On first call OPENED is false so open the file.
IF(.NOT. OPENED) THEN

OPEN(UNIT=57, FILE=’HIDDEN.DAT’, STATUS=’OLD’,
$ ACCESS=’DIRECT’, RECL=100)

OPENED = .TRUE.
END IF
READ(UNIT=57, REC=INDEX) RECORD
END

Here, for simplicity, the I/O unit number is a literal constant. The procedure would be more modular if
the unit number were also an argument of the procedure or if it contained some code, using theINQUIRE
statement, to determine for itself a suitable unused unit number.

There is, of course, no corresponding way to determine which is the last call to the procedure so that
the file can be closed, but this is not strictly necessary as the Fortran system closes all files automatically
when the program exits.

Note thatDATAstatements cannot be used to initialise variables or arrays which are dummy argu-
ments of a procedure, nor the variable which has the same name as the function.

11.5 General Rules

The general form of theDATAstatement is:
DATAnlist / clist /, nlist / clist /, ...

Wherenlist is a list of variable names, array names, substring names, and implied-DO lists, andclist is
a list of items which may be literal or named constants or either of these preceded by a repeat-count and
an asterisk. The repeat-count can also be an unsigned integer constant or named constant.

The comma which precedes each list of names except the first is optional. An implied-DO list has the
general form:

( dlist, intvar= start, limit, step)
Wheredlist is a list of implied-DO lists and array elements;intvar is an integer variable called the loop-
control variable;start, limit, andstepare integer expressions in which all the operands must be integer
constants or loop-control variables of outer implied-DO lists.

DATAstatements cannot be used to initialise items in the blank common block; items in named
common blocks can only be initialised within aBLOCK DATAprogram unit (see section 12.4).

TheDATAstatements in each program unit must follow all specification statements but they can be
interspersed with executable statements and statement function statements. It is, however, best to follow
the usual practice of putting all DATA statements before any of the executable statements.
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12 Common Blocks

A common block is a list of variables and arrays stored in a named area which may be accessed directly in
more than one program unit. Common blocks are mainly used to transfer information from one program
unit to another; they can be used in as an alternative to argument-list transfers or in addition to them.

Common blocks are sometimes used to fit large programs into small computers by arranging for
several program units to share a common pool of memory. This is not a recommended programming
practice and is likely to become redundant with the spread of virtual-memory operating systems.

The name of a common block is an external name which must be different from all other global
names, such as those of procedures, in the executable program. The variables and arrays stored with
the block cannot be initialised in the normal way, but only in aBLOCK DATAprogram unit which was
invented especially for this purpose.

12.1 Using Common Blocks

In most cases the best way to pass information from one program unit to another is to use the procedure
argument list mechanism. This preserves the modularity and independence of procedures as much as
possible. Argument lists are, however, less satisfactory in a group of procedures forming a package
which have to share a large amount of information with each other. Procedure argument lists then tend
to become long, cumbersome, and even inefficient. If this package of procedures is intended for general
use it is quite important to keep the external interface as uncomplicated as possible. This can be achieved
by using the procedure argument lists only for import of information from and export to the rest of the
program, and handling the communications between one procedure in the package and another with
common blocks. The user is then free to ignore the internal workings of the package.

For example, in a simple package to handle a pen-plotter you may want to provide simple procedure
calls such as:

CALL PLOPEN Initialise the plotting device
CALL SCALE(F) Set the scaling factor to F.
CALL MOVE(X,Y) Move the pen to position (X,Y)
CALL DRAW(X,Y) Draw a line from the last pen position to (X,Y).

These procedures clearly have to pass information from one to another about the current pen position,
scaling factor, etc. A suitable common block definition might look like this:

COMMON /PLOT/ OPENED, ORIGIN(2), PSCALE, NUMPEN
LOGICAL OPENED
INTEGER NUMPEN
REAL PSCALE, ORIGIN
SAVE /PLOT/

These specification statements would be needed in each procedure in the package.

Common Block Names

A program unit can access the contents of any common block by quoting its name in aCOMMONstate-
ment. Common block names are always enclosed in a pair of slashes and can only be used inCOMMON
andSAVEstatements. The common block itself has no data type and has a global name which must be
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distinct from the names of all program units. The name should also be distinct from all local names in
each program units which access the block. Each program unit can make use of any number of different
common blocks. There is also a special blank or un-named common block with unique properties which
are covered in section 12.2 below.

The variables and arrays within a common block do not have any global status: they are associated
with items in blocks bearing the same name in other program units only by their position within the
block. Thus, if in one program unit specifies:

COMMON /OBTUSE/ X(3)

and in another:

COMMON /OBTUSE/ A, B, C

then, assuming the data types are the same, X(1) corresponds to A, X(2) to B, and X(3) to C. The
COMMONstatements here are effectively setting up different names or aliases for the same set of memory
locations. The data types do not have to match provided the overall length is the same, but it is generally
only possible to transfer information from one program unit to another if the corresponding items have
the same data type. If they do not, when one item becomes defined all names for the same location which
have a different data type become undefined. There is one minor exception to this rule: information may
be transferred from a complex variable (or array element) to two variables of type real (or vice-versa)
since these are directly associated with its real and imaginary parts.

Usually it is necessary to arrange for corresponding items to have identical data types; it also min-
imises confusion if the same symbolic names are used as well. The simplest way to achieve this is to
use anINCLUDEstatement, if your system provides one. The include-file should contain not only the
COMMONstatement but also all the associated type andSAVEstatements which are necessary. It is, of
course, still necessary to recompile every program unit which accesses the common block whenever its
definition is altered significantly.

Declaring Arrays

The bounds of an array can be declared in theCOMMONstatement itself, or in a separatetypeor
DIMENSIONstatement, but only in one of them. Thus:

COMMON /DEMO/ ARRAY(5000)
DOUBLE PRECISION ARRAY

is exactly equivalent to:

COMMON /DEMO/ ARRAY
DOUBLE PRECISION ARRAY(5000)

or even:

COMMON /DEMO/ ARRAY
DOUBLE PRECISION ARRAY
DIMENSION ARRAY(5000)

but the verbosity of the third form has little to recommend it.
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Data Types

The normal data type rules apply to variables and arrays in each common block. A type statement is not
required if the initial letter rule would have the required effect, but type statements are advisable, espe-
cially if the implied-type rules are anywhere affected byIMPLICIT statements. Type statements may
precede or follow theCOMMONstatement. Similarly the lengths of character items should be specified in
a separate type statement: these cannot be specified in theCOMMONstatement.

Storage Units

The length of each common block is measured in storage units, as described in section 5.1. In summary,
integer, real, and logical items occupy one numeric storage unit each; complex and double precision
items occupy two each. To maximise portability, character storage units are considered incommensurate
with numerical storage units. For this reason character and non-character items cannot be mixed in the
same common block.

In practice this often means that two common blocks are needed to hold a particular data structure:
one for the character items and one for all the others. If, in the first example, it had been necessary for
the plotting package to store a plot title this would have to appear in a separate common block such as:

COMMON /PLOTC/ TITLE
CHARACTER TITLE*40
SAVE /PLOTC/

It is good practice to use related names for the blocks to indicate that the character and non-character
items are used in conjunction.

The length of a named common block must be the same in each program unit in which it appears.
Obviously the easiest way to ensure this is to make the common block contents identical in each program
unit. Note, however, that there is no requirement for data types to match, or for them to be listed in any
particular order, provided the items are not used for information transfer, and provided the total length of
the block is the same in each case. Thus these common blocks are both 2000 numerical storage units in
length:

COMMON /SAME/ G(1000)
DOUBLE PRECISION G

COMMON /SAME/ A, B, C, R(1997)
REAL A, R
LOGICAL B
INTEGER C

Items in a common block are stored in consecutive memory locations. Unfortunately there are a few
computer systems which require double precision and complex items to be stored in even-numbered stor-
age locations: these may find it hard to cope with blocks which contain a mixture of data types. Machines
with this defect can nearly always be placated by arranging for all double precision and complex items
to come at the beginning of each block.
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SAVEStatements and Common Blocks

Items in common blocks may become undefined when a procedure returns control to the calling unit just
like local variables and arrays. This will not, however, occur in the case of the blank common block
nor in any common block which is also declared in a program unit which is higher up the current chain
of procedure calls. Since the main program unit is always at the top of the chain any common block
declared in the main program can never become undefined in this way. In all other cases it is prudent to
useSAVEstatements.

The individual items in common blocks cannot be specified in aSAVEstatement, only the common
block name itself. Thus:

SAVE /SAME/, /DEMO/

If a common block is saved in any program unit then it must be saved in all of them. TheSAVE
statement ought therefore to be included with theCOMMONand associated type statements ifINCLUDE
statements are used. If the program is later modified so that the common block is also declared in the
main program this will bring aSAVEstatement into the main program unit, but although it then has no
effect, it does no harm.

Restrictions

The dummy arguments of a procedure cannot be members of a common block nor, in a function, can the
variable which has same name as the function. There are also some restrictions on the use of common
block items as actual arguments of procedure calls because of the possibility of multiple definition. For
example, if a procedure is defined like this:

SUBROUTINE SILLY(ARG)
COMMON /BLOCK/ COM

And the same common block is also used in the calling unit, with a common block item as the actual
argument, such as:

PROGRAM DUMMY
COMMON /BLOCK/ VALUE

*...
CALL SILLY(VALUE)

Then both ARG and COM within the subroutine SILLY are associated with the same item, VALUE,
and it is therefore illegal to assign a new value to either of them.

12.2 Blank Common Blocks

Common blocks are sometimes also used to reduce the total amount of memory used by a program by
arranging for several program units to share the same set of memory locations. This is a difficult and
risky procedure which should not be attempted unless all else fails.

Most Fortran systems operate a storage allocation system which is completely static: each program
unit has a separate allocation of memory for its local variables and arrays. If several procedures each
need to use large arrays internally the total amount of memory occupied by the program may be rather
large. If a set of procedures can be identified which are invoked in sequence, rather than one calling
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another, it may be feasible to reduce the total memory allocation by arranging for them to share a storage
area. Each will use the same common block for their internal array space.

Named common blocks are required to have the same length in each program unit: if they are used
it is necessary to work out which one needs the most storage and pad out all the others to same length.
An alternative is to the use the special blank (or un-named) common block which has the useful property
that it may have a different length in different program units.

In one program unit, for example, you could specify:

COMMON // DUMMY(10000)

and in another

COMPLEX SERIES(512,512), SLICE(512), EXPECT(1024)
COMMON // SERIES, SLICE, EXPECT

The blank common block has two other special properties. Firstly it cannot be initialised by aDATA
statement even within aBLOCK DATAprogram unit (but this is not a serious limitation for a block used
just for scratch storage). Secondly items within the blank common block never become undefined as
a result of a procedure exit. For this reason the blank common block cannot be specified in aSAVE
statement.

12.3 COMMONStatement

A program unit may contain any number ofCOMMONstatements, each of which can define contents for
any number of different common blocks.COMMONstatements are specification statements and have a
general form:

COMMON /name/ list-of-items ,/ name/ list-of-items ...

Each name is defined as a common block name, which has global scope. The Fortran Standard allows
it to use the same name as an intrinsic function, a local variable, or local array but not that of a named
constant or an intrinsic function. Each list of items can contain names of variables and arrays. The array
name may be followed by a dimension specification provided that each array is only dimensioned once
in each program unit. The comma shown before the second and subsequent block-name is optional.

The name of the blank common block is normally specified as two consecutive slashes (ignoring any
intervening blanks) but if it is the first block in the statement then the pair of slashes may be omitted.

The contents of a common block are a concatenation of the all the definitions for it in the program
unit. Thus:

COMMON /ONE/ A, B, C, /TWO/ ALPHA, BETA, GAMMA
COMMON /TWO/ DELTA

defines two blocks, /ONE/ contains three items while /TWO/ contains four of them.

In procedures, variables which are dummy arguments or which are the same as the function name
cannot appear in common blocks.

12.4 BLOCK DATAProgram Units

The block data program unit is a special form of program unit which is required only if it is necessary
to specify initial values for variables and arrays in named common blocks. The program unit starts
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with aBLOCK DATAstatement, ends with anENDstatement, and contains only specification andDATA
statements. Comment lines are also permitted. The block data program unit is not executable and it is
not a procedure.

The next example initialises the items in the common block for the plotting package used in section
12.1, so that the initial pen position is at the origin, the scaling factor starts at one, and so on. Thus a
suitable program unit would be:

BLOCK DATA SETPLT
*SETPLT initialises the values used in the plotting package.

COMMON /PLOT/ OPENED, ORIGIN(2), PSCALE, NUMPEN
LOGICAL OPENED
INTEGER NUMPEN
REAL PSCALE, ORIGIN
SAVE /PLOT/
DATA OPENED/.FALSE./, ORIGIN/2*0.0/, PSCALE/1.0/
DATA NUMPEN/-1/
END

A block data unit can specify initial values for any number of named common blocks (blank common
cannot be initialised). Each common block must be complete but it is not necessary to specify initial
values for all of the items within it. There can be more than one block data program unit, but a given
common block cannot appear in more than one of them.

For compatibility with Fortran66 it is also possible to have one un-named block data program unit in
a program.

Linking Block Data Program Units

If, when linking a program, one of the modules containing a procedure is accidentally omitted the linker
is almost certain to produce an error message. But, unless additional precautions are taken, this will not
occur if a block data subprogram unit is omitted. The program may even appear to work without it, but
is likely to produce the wrong answer.

There is a simple way to guard against this possibility: the name of the block data unit should be
specified in anEXTERNALstatement in at least some of the program units in which the common block
is used. There is no harm in declaring it in all of them. This ensures that a link-time reference will be
generated if any of these other program units are used. There is a slight snag to this technique if an
INCLUDEstatement is used to bring the common block definition into each program unit including the
block data unit. In order to avoid a self-reference, the include-file should not contain theEXTERNAL
statement.

Despite this slight complication, this is a simple and valuable precaution. It also makes it possible to
hold block data units on object libraries and retrieve them automatically when they are required, just like
all other types of subprogram unit.

13 Obsolete and Deprecated Features

None of the features covered here should be used in new software: some of them are completely obsolete,
others have practical defects which make them unsuitable for use in well-structured software. These
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brief descriptions are provided only for the benefit of programmers who have to understand and update
programs designed in earlier years.

13.1 Storage of Character Strings in Non-character Items

Before the advent of the character data type it was possible to store text in arithmetic variables and arrays,
although only very limited manipulation was possible. The number of characters which could be stored
in each item was entirely system-dependent. One side-effect is that many systems still allow the A format
descriptor to match input/output items of arithmetic types; this sometimes allows mismatches between
data-transfer lists and format descriptors to pass undetected.

13.2 Arithmetic IF Statement

This is an executable statement with the form:

IF( arithmetic-expression) label1, label2, label3

It generally provides a three-way branch (but two of the labels may be identical for a two-way branch).
The expression may be an integer, real, or double-precision value: control is transferred to the statement
attached to label1 if its value is negative, label2 if zero, or label3, if positive.

13.3 ASSIGNand assignedGO TOStatements

These two executable statements are normally used together. TheASSIGNstatement assigns a statement
label value to an integer variable. When this has been done the variable no longer has an arithmetic
value. If the label is attached to an executable statement the variable can only be used in an assignedGO
TOstatement; if attached to aFORMATstatement the variable can only be used in aREADor WRITE
statement. The general forms of these statements are:

ASSIGN labelTOinteger-variable

GO TOinteger-variable ,(label, label, ... label)

In the assignedGO TOstatement the comma and the entire parenthesised list of labels is optional.

AssignedGO TOcan be used to provide a linkage to and from a section of a program unit acting as
an internal subroutine, but is not a very convenient or satisfactory way of doing this.

13.4 PAUSEStatement

PAUSEis an executable statement which halts the program in such a way that execution can be resumed
in some way by the user (or on some systems by the computer operator). The general forms of the
statement are identical to those ofSTOP, for example:

PAUSE ’NOW MOUNT THE NEXT TAPE’

or

PAUSE 54321

PAUSEcan be replaced by oneWRITEand oneREADstatement: this is more flexible and less system-
dependent.
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13.5 AlternateRETURN

The alternateRETURNmechanism can be used in subroutines (but not external functions) to arrange a
transfer of control to some labelled statement on completion of aCALL statement. In order to use it
the arguments of theCALL statement must include a list of labels, each preceded by an asterisk. These
labels are attached to points in the calling program unit at which execution may resume after theCALL
statement is executed. For example:

CALL BAD(X, Y, Z, *150, *220, *390)

The corresponding subroutine statement will have asterisks as dummy arguments for each label spec-
ification:

SUBROUTINE BAD(A, B, C, *, *, *)

The return point depends on the value of an integer expression given in theRETURNstatement. Thus:

RETURN 2

will cause execution to be resumed at the statement attached to the second label argument, 220 in this
case. If the value of the integer expression in theRETURNstatement is not in the range 1 to n (where
there are n label arguments) or a plainRETURNstatement is executed, then execution resumes at the
statement after theCALL in the usual way.

The mechanism can be used for error-handling but is not very flexible as information cannot be passed
through more than one procedure level. It is better to use an integer argument to return a status value and
use that with anIF (or even a computedGO TOstatement) in the calling program.

13.6 ENTRYStatement

ENTRYstatements can be used to specify additional entry points in external functions and subroutines.
ENTRYis a non-executable statement which has the same form as aSUBROUTINEstatement. AnENTRY
statement may be used at any point in a procedure but all specification statements relating to its dummy
arguments must appear in the appropriate place with the other specification statements. If the main
entry point is aSUBROUTINEstatement then all alternative entry points can be called in the same way
as subroutines; if it is aFUNCTIONstatement than all alternative entry point names can be used as
functions. If the main entry point is a character function then all the alternative entry points must also
have that type. Alternative entry points may have different lists of dummy arguments; it is up to the user
to ensure that all those returning information to the calling program are properly defined before exit.

The rules for theENTRYstatement are necessarily complicated so it is easy to make mistakes. It is
generally better, or at least less unsatisfactory, to use a set of separate procedures which share information
using common blocks.

13.7 EQUIVALENCEStatement

EQUIVALENCEis a specification statement which causes two or more items (variables or arrays) to be
associated with each other, i.e. to correspond to the same area of memory. Character items can only be
associated with other character items; otherwise the data types do not have to match. As with common
blocks, however, transfer of information is only permitted via associated items if their data types match.
A special exception is made for a complex item which is associated with two real ones.
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EQUIVALENCEstatements can be used fairly safely to provide a simple variable name as an alias
for a particular array element or to associate a character variable with an array of the same length. For
example:

CHARACTER STRING*80, ARRAY(80)*1
EQUIVALENCE (STRING, ARRAY)

This slightly simplifies access to a single character in the string as the form ARRAY(K) can be used
instead of STRING(K:K).

The general form of the statement is:

EQUIVALENCE( v, v, ... v ), ( v, v, ... v ), ...

where each v is a variable, array, array element, or substring. Dummy arguments of procedures (and
variables which are external function names) cannot appear. An array name without subscripts refers to
the first element of the array. It is illegal to associate two or more elements of the same array, directly
or indirectly, or do anything which conflicts with the storage sequence rules. Variables and arrays in
common blocks can appear inEQUIVALENCEstatements but this has the effect of bringing all the
associated items into the block. They can be used to extend the contents of the block upwards, subject to
the rules for common block length, but not downwards.

Although theEQUIVALENCEstatement does have a few legitimate uses it is usually encountered in
programs where the rules of Fortran are broken to obtain some special effect. Programs which do this
are rarely portable.

13.8 Specific Names of Intrinsic Functions

Specific names should be used instead of the generic name of an intrinsic function only if the name is
to be the actual argument of a procedure call; the name then must also be declared in an INTRINSIC
statement. The following intrinsic functions cannot be used in this way, and their specific names are
therefore completely obsolete.

Obsolete specific name Preferred generic form
IFIX, IDINT INT
FLOAT, SNGL REAL
MAX0, AMAX1, DMAX1 MAX
AMAX0, MAX1 MAX *
MIN0, AMIN1, DMIN1 MIN
AMIN0, MIN1 MIN *

* the functions AMAX0, MAX1, AMIN0, and MIN1 which have a data type different from that of their
arguments can only be replaced by appropriate type conversion functions in addition to MAX or MIN.

13.9 PRINT Statement and simplifiedREAD

ThePRINT statement can produce formatted or list-directed output on the standard pre-connected output
file. Thus these two statements have exactly the same effect:

PRINT fmt, data-list
WRITE(*, fmt) data-list
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ThePRINT statement is limited in its functionality and misleading, since there is no necessity for its
output to appear in printed form.

In a similar way there is a simplified form of READ statement, so these have the same effect:

READ fmt, data-list
READ(*, fmt) data-list

13.10 END FILE Statement

TheEND FILE statement has the same general forms asREWINDandBACKSPACE:

END FILE(UNIT=unit, ERR=label, IOSTAT=int-var)
END FILE unit

It appends a special “end-file” record to a sequential file which is designed to trigger the end-of-file
detection mechanism on subsequent input. No further records can be written to the file after this end-file
record, i.e. the next operation must beCLOSE, REWIND,or BACKSPACE.

The statement seems to be superfluous on almost all current systems since they can detect the end
of an input file without its aid. The Fortran Standard requires that the end-file record be treated as a
physical record, so that after an end-of-file condition has been detected an explicitBACKSPACEoper-
ation is required before any new data records are appended. This notion is somewhat artificial and not
all systems implement it correctly. This is one of the few cases where a deliberate departure from the
Fortran Standard can enhance portability.

13.11 Obsolete Format Descriptors

The data descriptorDw.d is exactly equivalent to Ew.d on input; on output it is similar except that the
exponent will use the letterD instead ofE. Real and double precision data items can be read equally well
by D, E, F, or Gdescriptors.

The format descriptornHstring is exactly equivalent to ’string’ (where n is an unsigned
integer constant giving the length of the string). When used with a formattedWRITEstatement the string
is copied to the output record. ThenH form does not require apostrophes to be doubled within the string
but does require an accurate character count.

14 Common Extensions to the Fortran Standard

Almost before the official Standard (ANSI X3.9-1978) for Fortran77 had been defined, various software
producers started to add their own favourite features. The US Department of Defense issued in 1988
a supplement called MIL-STD-1753 setting out a list of extensions that it required Fortran systems to
support if they were to tender for DoD contracts. This requirement later spread to other areas of Federal
Government procurement, so these extensions are now almost universally provided and can be used with
confidence without reducing portability.
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14.1 MIL-STD-1753 Extensions

IMPLICIT NONE statement

This statement says that there are no default data types in this program unit, so that all named items
(variables, arrays, constants, and external functions) must have their data type specified in an explicit
typestatement. It must appear before all these specification statements and cannot be used together with
any otherIMPLICIT statement in the same program unit. Although novice programmers find it tedious
to have to declare each name before using it, the benefits are considerable in that mis-spelled names
come to light much more easily, and most professional programmers find it a worth-while investment.

INCLUDEstatement

The INCLUDE statement specifies the name of another file which contains some source code. It is
most often used to contain a set of specification statements which are common to a number of different
program units, for exampleCOMMONblocks and their associatedtypestatements, or a list of common
constants such asπ. The form of file-name is, of course, system dependent. In portable software it
is prudent to choose a simple name which is likely to be acceptable to most operating systems. For
example:

INCLUDE ’trig.inc’

where the filetrig.inc (or maybeTRIG.INC ) contains:

REAL PI, TWOPI, RTOD
PARAMETER (PI = 3.14159265, TWOPI=2.0*PI, RTOD=PI/180.0)

If such constants are defined only once, it is much easier to ensure that they are correct. Similarly the
definition of aCOMMONblock in only one place ensures that its consistency throughout the program.

DO-loops with END DO

The Fortran77 Standard seemed deficient in pairingIF with END IF but notDOwith END DO. This
extension is widely available and helpful in that it avoids the need to use a different statement label on
each loop. For example:

DO J = 1,NPTS
SUM = SUM + X(I)
SUMSQ = SUMSQ + X(I)**2

END DO

It is good practice to indent the lines between theDOand END DOstatements to make the repeated
section obvious. The appearance of a statement label in such code usually marks the destination of a
GO TOstatement, and alerts the programmer to some unusual alteration to the standard sequence of
operations. Where only labelledDO-loops are used, such exceptions are harder to spot.

A List of Intrinsic Functions

This table shows the number of arguments for each function and what data types are permitted. The data
type codes are:I = Integer,R= Real,D= Double precision,X = Complex,C= Character,L = Logical,*
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means the result has the same data type as the argument(s). Note that if there is more than one argument
in such cases they must all have the same data type.

R = ABS(X) Takes the modulus of a complex number (i.e. the square-root of
the sum of the squares of the two components).

* = ACOS(RD) Arc-cosine; the result is in the range 0 to+π
R = AIMAG(X) Extracts the imaginary component of a complex number. Use

REAL to extract the real component.
* = ANINT(RD) Rounds to the nearest whole number.
* = ATAN2(RD,RD) Arc-tangent ofarg1/arg2 resolved into the correct quadrant,

the result is in the range−π to +π. It is an error to have both
arguments zero.

C = CHAR(I) Returns Nth character in local character code table.
X = CMPLX(IRDX,IRD) Converts to complex, second arg optional.
X = CONJG(X) Computes the complex conjugate of a complex number.
* = COS(RDX) Cosine of the angle in radians.
D = DBLE(IRDX) Converts to double precision.
* = DIM(IRD,IRD) Returns the positive difference ofarg1 andarg2, i.e. if arg1 >

arg2 it returns (arg1 - arg2), otherwise zero.
D = DPROD(R,R) Computes the double precision product of two real values.
* = EXP(RDX) Returns the exponential, i.e. e to the power of the argument.

This is the inverse of the natural logarithm.
I = ICHAR(C) Returns position of first character of the string in the local char-

acter code table.
I = INDEX(C,C) Searches first string and returns position of second string within

it, otherwise zero.
I = INT(IRDX) Converts to integer by truncation.
I = LEN(C) Returns length of the character argument.
L = LGE(C,C) Lexical comparison using ASCII character code: returns true if

arg1 >= arg2.
L = LGT(C,C) Lexical comparison using ASCII character code: returns true if

arg1 > arg2.
L = LLE(C,C) Lexical comparison using ASCII character code: returns true if

arg1 <= arg2.
L = LLT(C,C) Lexical comparison using ASCII character code: returns true if

arg1 < arg2.
* = LOG(RDX) Logarithm to base e (where e=2.718...).
* = LOG10(RD) Logarithm to base 10.
* = MAX(IRD,IRD ,...) Returns the largest of its arguments.
* = MIN(IRD,IRD ,...) Returns the smallest of its arguments.
* = MOD(IRD,IRD) Returnsarg1 modulo arg2, i.e. the remainder after dividing

arg1 by arg2.
R = REAL(IRDX) Converts to real.
* = SIGN(IRD,IRD) Performs sign transfer: ifarg2 is negative the result is−arg1,

if arg2 is zero or positive the result isarg1.
* = SQRT(RDX) Square root.
* = TAN(RD) Tangent of the angle in radians.
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B Specific Names of Generic Functions

Specific names are still needed when the function name is used as the actual argument of another proce-
dure. The specific name must then also be declared in anINTRINSIC statement. This table lists all the
specific names which are still useful in Fortran77. The other functions either do not have generic names
or cannot be passed as actual arguments.

Generic Specific names
Name INTEGER REAL DOUBLE PRECISION COMPLEX
ABS IABS ABS DABS CABS
ACOS ACOS DACOS
AINT AINT DINT
ANINT ANINT DNINT
ASIN ASIN DASIN
ATAN ATAN DATAN
ATAN2 ATAN2 DATAN2
COS COS DCOS CCOS
COSH COSH DCOSH
DIM IDIM DIM DDIM
EXP EXP DEXP CEXP
LOG ALOG DLOG CLOG
LOG10 ALOG10 DLOG10
MOD MOD AMOD DMOD
NINT NINT IDNINT
SIGN ISIGN SIGN DSIGN
SIN SIN DSIN CSIN
SINH SINH DSINH
SQRT SQRT DSQRT CSQRT
TAN TAN DTAN
TANH TANH DTANH

C GNU Free Documentation Licence

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

C.0 PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.
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This License is a kind of “copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

C.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited directly
and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.
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C.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

C.3 COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition
to the public.

It is requested, but not required, that you contact the authors of the Document well before redistribut-
ing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

C.4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.
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B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

C.5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various original docu-
ments, forming one section entitled “History”; likewise combine any sections entitled “Acknowledge-
ments”, and any sections entitled “Dedications”. You must delete all sections entitled “Endorsements.”

C.6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of
each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

C.7 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they must appear on covers
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around the whole aggregate.

C.8 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in ad-
dition to the original versions of these Invariant Sections. You may include a translation of this License
provided that you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original English version will
prevail.

C.9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

C.10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. Seehttp://www.gnu.org/copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.
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