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Computer Architecture 
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Low Level Languages 
n  Machine	level	language:	Just	above	working	with	actual	

electronic	circuits.	
n  Registers:	All	microprocessors	are	based	around	a	group	of	

flip-flops	that	can	store	a	series	of	ones	and	zeros.		
n  The	8088	microprocessor	has	four	general	purpose	registers,	

each	consisDng	of	16	bits.	These	are	idenDfied	by	the	names:	
AX,	BX,	CX,	and	DX.		

n  There	are	also	nine	addiDonal	registers	with	special	purposes,	
called:	SI,	DI,	SP,	BP,	CS,	DS,	SS,	ES,	and	IP.		

n  IP,	the	InstrucDon	Pointer,	keeps	track	of	where	in	memory	
the	next	instrucDon	resides.		

n  Assembly	level	language	paRerns	of	ones	and	zeros	are	
assigned	names	according	to	the	funcDon	they	perform.		
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n  The instruction below tells an x86/IA-32 processor to 
move an immediate 8-bit value into a register.  

n  The binary code for this instruction is 10110 followed by 
a 3-bit identifier for which register to use. The identifier 
for the AL register is 000, so the following machine code 
loads the AL register with the data 01100001. 

     10110000 01100001 ; Load AL with 97
n  Assembly language for the 8086 family provides the 

mnemonic MOV (an abbreviation of move) for 
instructions such as this, so the machine code above 
can be written as follows in assembly language, which is 
much easier to read and to remember. 

n  MOV AL, 61h ; Load AL with 97 
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Higher Level Languages 

n  High-level languages isolate the programmer from the hardware. 
n  The source code may be transported between different types of 

microprocessors.  
n  Programmer who uses a compiled language needs to know nothing 

about the internal workings of the computer. Another programmer 
has assumed this responsibility, the one who wrote the compiler. 

n  In a high-level language, or a package, you are relying on the 
programmer who wrote the compiler to understand the best 
techniques for hardware manipulation.  

n  These programmers have never seen the particular problem you are 
dealing with. Therefore, they cannot always provide you with an 
optimal solution.  
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Packages: Matlab, 
Mathematica, Maple, 
Octave, IDL, GDL 

Restaurant Food 

Food cooked at home 
using raw ingredients 
bought from market 

Raw ingredients grown 
and then cooked at 
home. 
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Data inside the computer 
All data types are transformed into a uniform representation 
when they are stored in a computer and transformed back to 
their original form when retrieved. This universal 
representation is called a bit pattern. 

Figure:  A bit pattern 
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Figure  Storage of different data types 





Units 
1 Byte (B) = 8 bits 
1 KiB (Kibibyte) or 1 KB =1024 bytes 
= 2

10 

1 kB (kilobyte) = 1000 bytes 
1 MB (mebibyte) = 1048576 bytes = 
2

20 

1 mB (megabyte)=1000000 bytes 

ASCII: The American Standard Code for Information Interchange 

Amount of Data 



Information Object How many bytes 

A binary decision 1 bit 

A single text character 1 byte 

A typical text word 10 bytes 

A typewritten page 2 kilobyte s ( KB s) 

A low-resolution photograph 100 kilobytes 

A short novel 1 megabyte ( MB ) 

The contents of a 3.5 inch 
floppy disk 1.44 megabytes 

A high-resolution photograph 2 megabytes 

The complete works of 
Shakespeare 5 megabytes 

A minute of high-fidelity sound 10 megabytes 

One meter (or close to a yard) of 
shelved books 100 megabytes 

The contents of a CD-ROM 500 megabytes 

A pickup truck filled with books 1 gigabyte GB ) 

The contents of a DVD 17 gigabyte s 

A collection of the works of 
Beethoven 20 gigabytes 

A library floor of academic 
journals 100 gigabytes 

50,000 trees made into paper 
and printed 1 terabyte ( TB ) 

 
  

An academic research library 2 terabytes 

The print collections of the U.S. Library of Congress 10 terabytes 

The National Climactic Data Center database 400 terabytes 

Three years' of EOS data (2001) 1 petabyte ( PB ) 

All U.S. academic research libraries 2 petabytes 

All hard disk capacity developed in 1995 20 petabytes 

All printed material in the world 200 petabytes 

Total volume of information generated in 1999 2 exabytes ( EB s) 

All words ever spoken by human beings 5 exabytes 

Tera 10
12 

Peta 10
15 

Exa  10
18 



Representing a number on a 
computer 



We can think of infinite number of numbers in our mind. If we are 
given a number, we can always come up with a number larger than 
that. If we are given two numbers we can always come up with a 
number in between those two.  
 
But computer memory is a finite space. There is a limit on how large or 
how small a number or how close to each other two numbers could be 
handled on a computer. 
 
This depends on how a computer stores numbers.  



Sign Bit 
n-1 

Representation of an Integer 
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List	of	All	Possible	Integers	
Represented	by	4	bits		

11112 = 15-8=7 
11002 =12-8 = 4 
01002 = 4-8=-4 
00002 = 0-8=-8 
 
23.12510 = 10111.0012 

     =1.0111001 x 24 

S=0 
E=4+127=13110=10000011 
M=0111001 …sixteen zeros 
0 10000011 0111001…sixteen zeros 
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E=8 bits 
Max=255 
Excess 127 represntation 
255-127=128 
 

2
128 =1038 

 

M = 23 bits 
000000…0001 
1.00000…0001 
1.00000…0010 
2-23=10-7 

A=1.0000000 
B=1.0000001 
A-B=0.0000001 



Sign Bit 
n-1 

Representation of an Integer 

-2
n-1

	<		i		<	2
n-1	

-1	
	

Try finding 2*n+1 for n=0, 1, ..., N 
Check where you stop getting sensible result. 
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Example 3.5 

Store -28 in an 8-bit memory location using sign-and-magnitude 
representation. 

Solution 
The integer is changed to 7-bit binary. The leftmost bit is set to 1. 
The 8-bit number is stored. 
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Example 3.6 

Retrieve the integer that is stored as 01001101 in sign-and-
magnitude representation. 

Solution 
Since the leftmost bit is 0, the sign is positive. The rest of the bits 
(1001101) are changed to decimal as 77. After adding the sign, 
the integer is +77. 
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Example 

Show the number 
(101001000000000000000000000000000.00)2 

in floating-point representation. 

Solution 
We use the same idea, keeping only one digit to the left of the 
decimal point. 
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Example 

Show the number 
−(0.00000000000000000000000101)2 

in floating-point representation. 

Solution 
We use the same idea, keeping only one digit to the left of the 
decimal point. 
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Representa7on	of	a	Real	number	(Single	Precision)		
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Representa7on	of	a	Real	number	(Double	Precision)		
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Example 3.20 

Show the number 
(101001000000000000000000000000000.00)2 

in floating-point representation. 

Solution 
We use the same idea, keeping only one digit to the left of the 
decimal point. 
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Example 3.21 

Show the number 
−(0.00000000000000000000000101)2 

in floating-point representation. 

Solution 
We use the same idea, keeping only one digit to the left of the 
decimal point. 
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Normalization 
To make the fixed part of the representation uniform, both 
the scientific method (for the decimal system) and the 
floating-point method (for the binary system) use only one 
non-zero digit on the left of the decimal point. This is called 
normalization. In the decimal system this digit can be 1 to 
9, while in the binary system it can only be 1. In the 
following, d is a non-zero digit, x is a digit, and y is either 0 
or 1. 
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Note that the point and the bit 1 to the left of the 
fixed-point section are not stored—they are implicit. 

 i 

The mantissa is a fractional part that, together with 
the sign, is treated like an integer stored in sign-and-

magnitude representation. 

 i 
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Example 

Show the Excess_127 (single precision) representation of the 
decimal number 5.75. 

Solution 

a.  The sign is positive, so S = 0. 
b.  Decimal to binary transformation: 5.75 = (101.11)2. 
c.  Normalization: (101.11)2 = (1.0111)2 × 22. 
d.  E = 2 + 127 = 129 = (10000001)2, M = 0111. We need to add 

nineteen zeros at the right of M to make it 23 bits.  
e.  The presentation is shown below: 

The number is stored in the computer as 

01000000110110000000000000000000 
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Example 

Show the Excess_127 (single precision) representation of the 
decimal number –161.875. 

Solution 

a.  The sign is negative, so S = 1. 
b.  Decimal to binary transformation: 161.875= (10100001.111)2. 
c.  Normalization: (10100001.111)2 = (1.0100001111)2 × 27. 
d.  E = 7 + 127 = 134 = (10000110)2 and M = (0100001111)2. 
e.  Representation: 

The number is stored in the computer as 

11000011010000111100000000000000 
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Example 

Show the Excess_127 (single precision) representation of the 
decimal number –0.0234375. 

Solution 
a.  S = 1 (the number is negative). 
b.  Decimal to binary transformation: 0.0234375 = (0.0000011)2. 
c.  Normalization: (0.0000011)2 = (1.1)2 × 2−6. 
d.  E = –6 + 127 = 121 = (01111001)2 and M = (1)2. 
e.  Representation: 

The number is stored in the computer as 

10111100110000000000000000000000 
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Example 

The bit pattern (11001010000000000111000100001111)2 is 
stored in Excess_127 format. Show the value in decimal. 

Solution 
a.  The first bit represents S, the next eight bits, E and the 

remaining 23 bits, M. 

b.  The sign is negative. 
c.  The shifter = E − 127 = 148 − 127 = 21. 
d.  This  gives us (1.00000000111000100001111)2 × 221. 
e.  The binary number is (1000000001110001000011.11)2. 
f.  The absolute value is 2,104,378.75. 
g.  The number is −2,104,378.75. 
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Figure 3.12  Overflow and underflow in floating-point representation of reals 

Overflow and Underflow 

Zero: A real number with an integral part and the fractional part 
set to zero, that is, 0.0, cannot be stored using the steps discussed 
above. To handle this special case, it is agreed that in this case the 
sign, exponent and the mantissa are set to 0s. 
Infinity: Every bit of the exponent is 1 and mantissa is all 0. 
NaN: Every bit of the exponent is 1 and at least one mantissa bit 
is 1 
 



Numerical Precision 
n  The	difference	between	1	and	the	closest	number	to	
1	that	is	disDnct	from	1.		

n  With	a	23-bit	manDssa	the	precision	is	2−23	≃	1.2	×	
10−7.		

n  The	precision	is	also	a	typical	value	of	the	relaDve	
error	of	a	number	that	is	not	represented	exactly	by	
23	bits	of	manDssa.	The	relaDve	error	is	defined	by		

						
					RelaDve	error	=	(esDmated	value	−	exact	value)/exact	value		
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In	base-10	the	number	1/2	has	a	terminaDng	expansion	(0.5)	while	the	number	1/3	
does	not	(0.333...).	In	base-2	only	raDonals	with	denominators	that	are	powers	of	2	
(such	as	1/2	or	3/16)	are	terminaDng.	Any	raDonal	with	a	denominator	that	has	a	
prime	factor	other	than	2	will	have	an	infinite	binary	expansion.		
	
This	means	that	numbers	which	appear	to	be	short	and	exact	when	wriRen	in	
decimal	format	may	need	to	be	approximated	when	converted	to	binary	floaDng-
point.	For	example,	the	decimal	number	0.1	is	not	representable	in	binary	floaDng-
point	of	any	finite	precision;	the	exact	binary	representaDon	would	have	a	"1100"	
sequence	conDnuing	endlessly:	
	
	e	=	−4;	f	=	1100110011001100110011001100110011...	
where,	as	previously,	f	is	the	significand	and	e	is	the	exponent.	
When	rounded	to	24	bits	this	becomes	
e	=	−4;	f	=	110011001100110011001101,	
which	is	actually	0.100000001490116119384765625	in	decimal.	
	

	 	 	 	 	---Wikipedia	


