How Numbers are Stored in

!'_ Computers

Heavily borrowed from:
Foundations of Computer Science
(Cengage Learning)

1
McGraw-Hill ©The McGraw-Hill Companies, Inc., 2000

3.2

Computer Architecture

Von Neumann
Basic Structure

TABLE4-3

A machine code program for adding 1234
and 4321. This 1s the lowest level of
programming: direct manipulation of the
digital electronics. (The right column is a
continuation of the left column).

TABLE 4-4

An assembly program for adding
1234 and 43}2 F En assembler1s a
program that converts an assembly
program into machine code.

TABLE 4-5

A BASIC program for adding 1234
and 4321. A compileris a program
that converts this type of high-level
source code mto machine code.

3.3

10111001 00000000
11010010 10100001
00000100 00000000
10001001 00000000
00001110 10001011
00000000 00011110
00000000 00000010
10111001 00000000
11100001 00000011
00010000 11000011
10001001 10100011
00001110 00000100
00000010 00000000
MOV CX,1234

MOV DS:[0].CX

MOV CX 4321
MOV DS:[2].CX

MOV AX DS:[0]
MOV BX.DS:[2]

ADD AX.BX

:store 1234 in register CX, and then
:transfer it to memory location DS:[0]

:store 4321 1n register CX, and then
:transfer it to memory location DS:[2]

:move variables stored in memory at
:DS:[0] and DS:[2] into AX & B

:add AX and BX. store sum in AX

MOV DS:[4].AX

100 A=1234
110 B =4321
120 C=A+B

130 END

:move the sum into memory at DS:[4]

3.4

Low Level Languages

Machine level language: Just above working with actual
electronic circuits.

Registers: All microprocessors are based around a group of
flip-flops that can store a series of ones and zeros.

The 8088 microprocessor has four general purpose registers,
each consisting of 16 bits. These are identified by the names:
AX, BX, CX, and DX.

There are also nine additional registers with special purposes,
called: SI, DI, SP, BP, CS, DS, SS, ES, and IP.

IP, the Instruction Pointer, keeps track of where in memory
the next instruction resides.

Assembly level language patterns of ones and zeros are
assigned names according to the function they perform.

3.5

The instruction below tells an x86/1A-32 processor to
move an immediate 8-bit value into a reqister.

The binary code for this instruction is 10110 followed by
a 3-bit identifier for which register to use. The identifier
for the AL register is 000, so the following machine code
loads the AL register with the data 01100001.

10110000 01100001 ; Load AL with 97

Assembly language for the 8086 family provides the
mnemonic MOV (an abbreviation of move) for
Instructions such as this, so the machine code above
can be written as follows in assembly language, which is
much easier to read and to remember.

MOV AL, 61h ; Load AL with 97

3.6

Higher Level Languages

= High-level languages isolate the programmer from the hardware.

= The source code may be transported between different types of
MICroprocessors.

= Programmer who uses a compiled language needs to know nothing
about the internal workings of the computer. Another programmer
has assumed this responsibility, the one who wrote the compiler.

= In a high-level language, or a package, you are relying on the
programmer who wrote the compiler to understand the best
techniques for hardware manipulation.

= These programmers have never seen the particular problem you are
dealing with. Therefore, they cannot always provide you with an
optimal solution.

Restaurant Food

Packages: Matlab,
Mathematica, Maple,
Octave, IDL, GDL

using raw ingredients

bought from market

Assembly Language

Raw ingredients grown
and then cooked at
home.

3.7

Data inside the computer

All data types are transformed into a uniform representation
when they are stored in a computer and transformed back to
their original form when retrieved. This universal
representation 1s called a bit pattern.

1000101011 1111

Figure: A bit pattern

3.8

3.9

A number

A character
typed on
keyboard

Part of
an 1mage

Part of
a song

Part of
a film

Figure Storage of different data types

65 » Program I » 01000001
Math routine Memory

“A” » Program I > 01000001
Text editor Memory

% » Program | > 01000001
Image recorder Memory

[~ > Program | > 01000001
Music recorder Memory

() » Program | > 01000001
Video recorder Memory

ASCII Table

Oct Char Hex Oct Char | Dec Hex Oct Char |Dec Hex O0ct Char

0 0 0 32 20 40 [space] 64 40 100 @ 96 60 140 '
1 1 1 33 21 41 ! 65 41 101 A 97 61 141 a
2 2 2 34 22 42 " 66 42 102 B 98 62 142 b
3 3 3 35 23 43 # 67 43 103 C 99 63 143 c
4 4 4 36 24 44 $ 68 44 104 D 100 64 144 d
5 5 5 37 25 45 % 69 45 105 E 101 65 145 (3
6 6 6 38 26 46 & 70 46 106 F 102 66 146 f
7 7 7 39 27 47 ! 71 47 107 G 103 67 147 g
8 8 10 40 28 50 (72 48 110 H 104 68 150 h
9 9 11 41 29 51) 73 49 111 | 105 69 151 i
10 A 12 42 2A 52 * 74 4A 112) 106 6A 152 j
11 B 13 43 2B 53 - 75 4B 113 K 107 6B 153 k
12 C 14 44 2C 54 76 4C 114 L 108 6C 154 |
13 D 15 45 2D 55 - 77 4D 115 M 109 6D 155 m
14 E 16 46 2E 56 . 78 4E 116 N 110 6E 156 n
15 F 17 47 2F 57 / 79 4F 117 0 111 6F 157 0
16 10 20 48 30 60 0 80 50 120 P 112 70 160 p
17 11 21 49 31 61 1 81 51 121 Q 113 71 161 q
18 12 22 50 32 62 2 82 52 122 R 114 72 162 r
19 13 23 51 33 63 3 83 53 123 S 115 73 163 S
20 14 24 52 34 64 4 84 54 124 T 116 74 164 t
21 15 25 53 35 65 5 85 55 125 U 117 75 165 u
22 16 26 54 36 66 6 86 56 126 \) 118 76 166 v
23 17 27 55 37 67 7 87 57 127 w 119 77 167 W
24 18 30 56 38 70 8 88 58 130 X 120 78 170 X
25 19 31 57 39 71 9 89 59 131 Y 121 79 171 y
26 1A 32 58 3A 72 - 90 5A 132 Z 122 TA 172 z
27 1B 33 59 3B 73 - 91 5B 133 [123 7B 173 {
28 1C 34 60 3C 74 < 92 5C 134 \ 124 7C 174 |
29 1D 35 61 3D 75 = 93 5D 135] 125 7D 175 }
30 1E 36 62 3E 76 > 94 5E 136 ~ 126 7E 176 ~
31 1F 37 63 3F 77 ? 95 5F 137 127 7F 177

Amount of Data

ASCII: The American Standard Code for Information Interchange

Units

1 Byte (B) = 8 bits

1 Kﬁ (Kibibyte) or 1 KB =1024 bytes
=2

1 kB (kilobyte) = 1000 bytes

1 %B (mebibyte) = 1048576 bytes =
2

1 mB (megabyte)=1000000 bytes

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
0 00 Null 32 20 Spsace 64 40 0@ 96 60
1 01 Startof heading 33 21 ! 65 41 A 97 61 =a
2 D2 Start of text 349: 22 n 66 42 B 98 b2 b
3 3 Endoftexd 35 23 # 57 ‘43 L 99 63 ¢
4 04 Endof transmit 36 24 § 68 44 D 100 64 d
5 05 Enguiry 37 25 3% 69 45 E 101 65 e
6 06 Acknowledge 38 26 & 70 46 F 102 66 £
707 Audble bell 39, 24 71 47 G 103 67 g
8 08 Backspace 40 28 (72 48 H 104 68 h
S 08 Horizontal tak 41 29) 73 49 I 105 69 1
10 0&A Line feed 42: 2A % 74 44 J 106 64 3
11 0B Veticaltab 43 2B + 75 4B K 107 6B k
12 0C Form feed 44 2C. ., 76 4C L 108 6C 1
13 0D Carriage return 45 2D - 77 4D H 102 6D m
14 O0E Shift out 46 2B 78 4E N 110 6E n
15 OF Shiftin 47 2F / 79 4P D 131 BE o
16 10 Datalink escape 45 30 O 80 50 P 1124 %0 p
17 11 Device control 1 49 31 41 81 51 Q T3 1 g
18 12 Device control 2 50 ‘J2- 2 B2 52 R 114 R[22
12 3 Device control 3 51, [[83 53 8 A5 73 B
20 14 Device control 4 o2y 3% 4 84 54 T 116 74 &
21 15 MNeg. acknowledge 53 @AS5: 5 85 55 U 7 585 u
22 16 Synchronous idle 54 36 6 86 56 W 118 76 W
23 17 Endtrans. block 585 B4 F 87 57 W 119 77 w
24 18 Cancel 56 38 8 88 58 X 120 %8 X
25 19 Endof medium 57 39 9 89 59 ¥ 121 79 ¥y
26 1A Substitution 58 3A @ 90 ©5a Z 122 T7A z
27 1B Escape 59. 3B 2 91 5B [123 7B
28 1C File separator 60 3C < 92 5C 122 9C ||
29 1D Group separator 61 3D = 93 5D] 125 3D 1}
30 1E Record separator 62: JE 94 §5E * 126 HFE =~
3 1F Unit separator 63 3F 2 95 5F 1Z27 %F O

Information Object How many bytes An academic research library 2 terabytes

A binary decision 1 bit The print collections of the U.S. Library of Congress | 10 terabytes

A single text character 1 byte

A typical text word 10 bytes The National Climactic Data Center database 400 terabytes

A typewritten page 2 kilobyte s (KB s) Three years' of EOS data (2001) 1 petabyte (PB)
A low-resolution photograph 100 kilobytes

A short novel

1 megabyte (MB)

All U.S. academic research libraries

2 petabytes

The contents of a 3.5 inch
floppy disk

1.44 megabytes

All hard disk capacity developed in 1995

20 petabytes

All printed material in the world

200 petabytes

Total volume of information generated in 1999

2 exabytes (EB s)

All words ever spoken by human beings

S exabytes

A high-resolution photograph 2 megabytes

A minute of high-fidelity sound 10 megabytes
One meter (or close to a yard) of

shelved books 100 megabytes
The contents of a CD-ROM 500 megabytes

A pickup truck filled with books

1 gigabyte GB)

The contents of a DVD 17 gigabyte s
A collection of the works of 20 sicabvtes
Beethoven gigaby

A library floor of academic 100 gigabytes

journals

50,000 trees made into paper
and printed

1 terabyte (TB)

12
Tera 1015

Peta 1018
Exa 10

Representing a number on a
computer

We can think of infinite humber of humbers in our mind. If we are
given a number, we can always come up with a number larger than
that. If we are given two numbers we can always come up with a
number in between those two.

But computer memory is a finite space. There is a limit on how large or

how small a number or how close to each other two numbers could be
handled on a computer.

This depends on how a computer stores numbers.

Representation of an Integer

y

Sign Bit

<
~

n-1

v

3.16

bits

integer

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

~N O Ot s W N = O

—8

List of All Possible Integers
Represented by 4 bits

1111, = 15-8=7
1100, =12-8 = 4
0100, = 4-8=-4
0000, = 0-8=-8

23.125,,=10111.001,

=1.0111001 x 24
S=(0
E=4+127=131,,=10000011
M=0111001 ---sixteen zeros
010000011 0111001 ---sixteen zeros

3.17

E=8 bits
Max=255

Excess 127 represntation
255-127=128

2128 =1038

M = 23 bits
000000---0001
1.00000---0001
1.00000---0010
2-23=10"7
A=1.0000000
B=1.0000001
A-B=0.0000001

Representation of an Integer

v

/) n-1

Sign Bit

n-1 n-1
-2 <i<2 -1

Try finding 2*n+1 for n=0, 1, ..., N
Check where you stop getting sensible result.

Example 3.5

Store —28 1n an 8-bit memory location using sign-and-magnitude
representation.

Solution
The 1nteger 1s changed to 7-bit binary. The leftmost bit 1s set to 1.
The 8-bit number is stored.

Change 28 to 7-bit binary o 0 1 1 1 0 O

Add the sign and store -0 o 1 1 1 0 O

3.19

Example 3.6

Retrieve the integer that i1s stored as 01001101 in sign-and-
magnitude representation.

Solution

Since the leftmost bit is 0, the sign 1s positive. The rest of the bits
(1001101) are changed to decimal as 77. After adding the sign,
the integer 1s +77.

3.20

Show the number
(101001000000000000000000000000000.00),

in floating-point representation.

Solution
We use the same 1dea, keeping only one digit to the left of the
decimal point.

Actual number -+ (101001000000000000000000000000000.00),

Scientific notation — + 1.01001 x 232

3.21

Show the number
—(0.00000000000000000000000101),

in floating-point representation.

Solution
We use the same 1dea, keeping only one digit to the left of the
decimal point.

Actual humber — - (0.00000000000000000000000101),

Scientific notation — - 1.01 x 2724

3.22

Representation of a Real number (Single Precision)

5 e f g
Bit position: | 31 | 30 2% | 22 0
Number name Values of s, e, and f Value of single
Normal 0<e<255 [—1)F 52 501 f
Subnormal e=0; Fsl (—1)° x 27126 x 0.f
Signed Zero (+0) e=0, f=0 (—=1)* x 0.0
+00 s=0,e=255, f=0 +INF
—00 s=1 e=255, f=0 — INF

Not a number s=u, e=255, f#0 NaN

3.23

Representation of a Real number (Double Precision)

S e £ f (cont)

Bit position: | 63 | 62 52 | 51 32 | 31 0
Number name Values of 5, ¢, and f Value of double
Normal 0 <e <2047 (—1)F x 26105 % 1.1
Subnormal e=0, f#0 (—1)% % 271022 . 0. f
Signed zero e=0, f=0 (—1)* x 0.0
+00 s=0, e=2047, f=0 +INF
—00 s=1, e=2047, f=0 —INF

Notanumber s=u, e=2047, f #0 NaN

3.24

Example 3.20

Show the number
(101001000000000000000000000000000.00),

in floating-point representation.

Solution
We use the same 1dea, keeping only one digit to the left of the
decimal point.

Actual number -+ (101001000000000000000000000000000.00),

Scientific notation — + 1.01001 x 232

3.25

Example 3.21

Show the number
—(0.00000000000000000000000101),

in floating-point representation.

Solution
We use the same 1dea, keeping only one digit to the left of the
decimal point.

Actual humber — - (0.00000000000000000000000101),

Scientific notation — - 1.01 x 2724

3.26

Normalization

To make the fixed part of the representation uniform, both
the scientific method (for the decimal system) and the
floating-point method (for the binary system) use only one
non-zero digit on the left of the decimal point. This 1s called
normalization. In the decimal system this digit can be 1 to
9, while 1n the binary system i1t can only be 1. In the
following, d 1s a non-zero digit, x 1s a digit, and y 1s either 0
or 1.

Decimal — A XXXXXXXXXXXXXX Note:dis 1to9 and each xis0to 9

I+

Binary — 1.yyyyyyyyyyyyyy Note:each yis0or 1

I+

3.27

+ 26 x 1.0001110101

+ 6 0001110101
! ! !
Sign Exponent Mantissa

Note that the point and the bit 1 to the left of the
fixed-point section are not stored—they are implicit.

The mantissa is a fractional part that, together with
the sign, is treated like an integer stored in sign-and-
magnitude representation.

3.28

Show the Excess 127 (single precision) representation of the
decimal number 5.75.

Solution

The sign 1s positive, so S = 0.

Decimal to binary transformation: 5.75 = (101.11),.
Normalization: (101.11), = (1.0111), x 22,

E=2+127=129 =(10000001),, M = 0111. We need to add
nineteen zeros at the right of M to make 1t 23 bits.

e. The presentation 1s shown below:

oo o p

0 10000001 10110000000000000000000
S E M

The number is stored in the computer as

01000000110110000000000000000000

3.29

Show the Excess 127 (single precision) representation of the
decimal number —161.875.

Solution

The sign 1s negative, so S = 1.
Decimal to binary transformation: 161.875= (10100001.111),.
Normalization: (10100001.111), = (1.0100001111), x 27.

E=7+127=134=(10000110), and M = (0100001111),.

Representation:

¢ po oo

1 10000110 01000011110000000000000
S E M

The number is stored in the computer as

11000011010000111100000000000000

3.30

Example

Show the Excess 127 (single precision) representation of the
decimal number —0.0234375.

Solution

S = 1 (the number 1s negative).
Decimal to binary transformation: 0.0234375 = (0.0000011),.

Normalization: (0.0000011), = (1.1), x 27°.
E=-6+127=121=(01111001), and M = (1),.
Representation:

¢ po oo

1 01111001 10000000000000000000000
S E M

The number is stored in the computer as

10111100110000000000000000000000

3.31

The bit pattern (11001010000000000111000100001111), 1is
stored 1n Excess 127 format. Show the value in decimal.

Solution

a. The first bit represents S, the next eight bits, E and the
remaining 23 bits, M.

S E M
1 10010100 00000000111000100001111

The sign 1s negative.
The shifter=E — 127 =148 — 127 = 21.

This gives us (1.00000000111000100001111), x 221,
The binary number i1s (1000000001110001000011.11),.
The absolute value 1s 2,104,378.75.

The number 1s —2,104,378.75.

I N e

3.32

single precision double precision

largest number ~ 108 ~ 10308
smallest number | =~ 107°%® ~ 10308

precision ~ 10~7 ~ 1016

3.33

Overflow and Underflow

— Largest: — (1 — 2_24) X 2+128 + Largest: + (1 — 2_24) X 2+128

— Smallest: — (1 — 2_1) x o127 + Smallest: + (1 — 2_1) x o127

P tabl P tabl
Overflow (r;:;gtflve)e Underflow E;Soes?tiil/e)e Overflow

(|] |)
—Largest —Smallest 0 +Smallest +Largest

Figure 3.12 Overflow and underflow in floating-point representation of reals

Zero: A real number with an integral part and the fractional part
set to zero, that 1s, 0.0, cannot be stored using the steps discussed
above. To handle this special case, it 1s agreed that in this case the
sign, exponent and the mantissa are set to Os.

Infinity: Every bit of the exponent is 1 and mantissa i1s all 0.
NaN: Every bit of the exponent 1s 1 and at least one mantissa bit
1s 1

3.34

Numerical Precision

m The difference between 1 and the closest number to
1 that is distinct from 1.

= With a 23-bit mantissa the precision is 2723 = 1.2 x
107,

= The precision is also a typical value of the relative
error of a number that is not represented exactly by
23 bits of mantissa. The relative error is defined by

Relative error = (estimated value — exact value)/exact value

3.35

In base-10 the number 1/2 has a terminating expansion (0.5) while the number 1/3
does not (0.333...). In base-2 only rationals with denominators that are powers of 2
(such as 1/2 or 3/16) are terminating. Any rational with a denominator that has a
prime factor other than 2 will have an infinite binary expansion.

This means that numbers which appear to be short and exact when written in
decimal format may need to be approximated when converted to binary floating-
point. For example, the decimal number 0.1 is not representable in binary floating-
point of any finite precision; the exact binary representation would have a "1100"
sequence continuing endlessly:

e=-4;f=1100110011001100110011001100110011...

where, as previously, f is the significand and e is the exponent.
When rounded to 24 bits this becomes
e=-4;,f=110011001100110011001101,

which is actually 0.100000001490116119384765625 in decimal.

---Wikipedia

