
Homework 3: Partial Differential Equation

Exercise 3.1: Consider the following simple model of an electronic capacitor, consisting of two flat metal

plates enclosed in a square metal box:

10 cm 6 cm

+1 V −1 V

0 V

2 cm 6 cm 2 cm

For simplicity let us model the system in two dimensions. Using any of the methods we have studied,

write a program to calculate the electrostatic potential in the box on a grid of 100 × 100 points, where

the walls of the box are at voltage zero and the two plates (which are of negligible thickness) are at

voltages ±1 V as shown. Have your program calculate the value of the potential at each grid point to a

precision of 10−6 volts and then make a density plot of the result.

Hint: Notice that the capacitor plates are at fixed voltage, not fixed charge. In effect, the capacitor

plates are part of the boundary condition in this case: they behave the same way as the walls of the box,

with potentials that are fixed at a certain value and cannot change.

Exercise 3.2: Write a program to solve Poisson’s equation for the system described below. Work in units

where ǫ0 = 1 and continue the iteration until your solution for the electric potential changes by less than

10−6 V per step at every grid point.

0 volts

20 cm

20 cm

Two square charges are placed inside a square two dimensional box. The potential is zero on the walls

and the squares have charge densities +1C m−2 and −1C m−2
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Exercise 3.3: Thermal diffusion in the Earth’s crust

An example of a diffusion problem with a time-varying boundary condition is the diffusion of heat

into the crust of the Earth, as surface temperature varies with the seasons. Suppose the mean daily

temperature at a particular point on the surface varies as:

T0(t) = A + B sin
2πt

τ
,

where τ = 365 days, A = 10◦C and B = 12◦C. At a depth of 20 m below the surface almost all annual

temperature variation is ironed out and the temperature is, to a good approximation, a constant 11◦C

(which is higher than the mean surface temperature of 10◦C—temperature increases with depth, due to

heating from the hot core of the planet). The thermal diffusivity of the Earth’s crust varies somewhat

from place to place, but for our purposes we will treat it as constant with value D = 0.1 m2 day−1.

Write a program to calculate the temperature profile of the crust as a function of depth up to 20 m

and time up to 10 years. Start with temperature everywhere equal to 10◦C, except at the surface and the

deepest point, choose values for the number of grid points and the time-step h, then run your program

for the first nine simulated years, to allow it to settle down into whatever pattern it reaches. Then for

the tenth and final year plot four temperature profiles taken at 3-month intervals on a single graph to

illustrate how the temperature changes as a function of depth and time.

Exercise 3.4: The Schrödinger equation and the spectral method

This exercise uses the spectral method to solve the time-dependent Schödinger equation

−
h̄2

2M

∂2ψ

∂x2
= ih̄

∂ψ

∂t

for a single particle in one dimension in a box of length L with impenetrable walls. The wavefunction

in such a box necessarily goes to zero on the walls and hence one possible (unnormalized) solution of

the equation is

ψk(x, t) = sin

(

πkx

L

)

eiEt/h̄,

where the energy E can be found by substituting into the Schrödinger equation, giving

E =
π2h̄2k2

2ML2
.

We can write a full solution as a linear combination of such individual solutions, which on the grid

points xn = nL/N takes the value

ψ(xn, t) =
1

N

N−1

∑
k=1

bk sin

(

πkn

N

)

exp

(

i
π2h̄k2

2ML2
t

)

,

where the bk are some set of (possibly complex) coefficients that specify the exact shape of the wave-

function and the leading factor of 1/N is optional but convenient.

Since the Schrödinger equation is first order in time, we need only a single initial condition on the

value of ψ(x, t) to specify the coefficients bk, although, since the coefficients are in general complex, we

will need to calculate both real and imaginary parts of each coefficient.

We consider an electron (mass M = 9.109 × 10−31 kg) in a box of length L = 10−8 m. At time t = 0

the wavefunction of the electron has the form

ψ(x, 0) = exp

[

−
(x − x0)2

2σ2

]

eiκx,
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where

x0 =
L

2
, σ = 1 × 10−10 m, κ = 5 × 1010 m−1,

and ψ = 0 on the walls at x = 0 and x = L.

a) Write a program to calculate the values of the coefficients bk, which for convenience can be broken

down into their real and imaginary parts as bk = αk + iηk. Divide the box into N = 1000 slices and

create two arrays containing the real and imaginary parts of ψ(xn, 0) at each grid point. Perform

discrete sine transforms on each array separately and hence calculate the values of the αk and ηk

for all k = 1 . . . N − 1.

(Note that the first element of the input array should in principle always be zero for a sine trans-

form. Similarly the first element of the returned array is always zero, since the k = 0 coefficient of a

sine transform is always zero. So in effect, the sine transform really only takes N − 1 real numbers

and transforms them into another N − 1 real numbers. In some implementations of the discrete

sine transform, therefore the first element of each array is simply omitted, since it’s always zero

anyway, and the arrays are only N − 1 elements long.)

b) Putting bk = αk + iηk in the solution above and taking the real part we get

Re ψ(xn, t) =
1

N

N−1

∑
k=1

[

αk cos

(

π2h̄k2

2ML2
t

)

− ηk sin

(

π2h̄k2

2ML2
t

)]

sin

(

πkn

N

)

for the real part of the wavefunction. This is an inverse sine transform with coefficients equal to

the quantities in the square brackets. Extend your program to calculate the real part of the wave-

function ψ(x, t) at an arbitrary time t using this formula and the inverse discrete sine transform .

Test your program by making a graph of the wavefunction at time t = 10−16 s.

c) Extend your program further to make an animation of the wavefunction over time. A suitable

time interval for each frame of the animation is about 10−18 s.

d) Run your animation for a while and describe what you see. Write a few sentences explaining in

physics terms what is going on in the system.
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