Homework 1: Derivative, Random Numbers

Exercise 8.1: Most Probable velocity:

The distribution of velocity of molecules in a gas is given by $f(v)=v^{5} e^{-v^{2}}$. Find the most probable velocity. Apply your knowledge of calculating derivative numerically by central difference method. Use $\Delta v=0.05$. Compare the result with exact value.

Exercise 8.2: Position, speed, acceleration:

The following table gives the position of a particle in one dimension as a function of time. Find its speed at $t=0.1,0.3,0.5, \ldots, 1.9 \mathrm{~s}$. Find if its position has a maximum or a minimum during this interval. At which time is the particle located at the maxima/minima? Find its acceleration at that point to figure out if it is a maximum or a minimum.

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{t})(\mathrm{cm})$
0.0	0.0
0.2	0.16
0.4	0.27
0.6	0.33
0.8	0.36
1.0	0.37
1.2	0.36
1.4	0.35
1.6	0.32
1.8	0.30
2.0	0.27

Exercise 8.3: Random Walk:

This is an extension of the random walk problem given in class. A particle is confined to a square grid or lattice $L \times L$ squares on a side, so that its position can be represented by two integers $i, j=0 \ldots L-1$. It starts in the middle of the grid. On each step of the simulation, choose a random direction-up, down, left, or right-and move the particle one step in that direction. This process is called a random walk. The particle is not allowed to move outside the limits of the lattice-if it tries to do so, choose a new random direction to move in.

Write a program to perform $N=10^{4}$ steps of this process on a lattice with $L=101$. Repeat the same for 50 particles. Write a table in an output file called "distancevsstep.out" containing two columns. Column one is the time step (i.e., it runs from 1 to 10^{4}) and column two is the average distance (\bar{x}) of all 50 particles from the center after each time step. Check if $\bar{x} \propto \sqrt{N}$.

Exercise 8.4: Rutherford Scattering

a) Starting with two numbers z and θ drawn from two uniform random distributions between 0 and 1 , and 0 and 2π, respectively, construct two random numbers (x, y) in a Gaussian distribution by the following:

$$
\begin{gathered}
r=\sqrt{-2 \sigma^{2} \ln (1-z)} \\
x=r \cos \theta \\
y=r \sin \theta,
\end{gathered}
$$

where σ is a constant that you may choose. Check that the distribution of a large number of x and y are indeed Gaussian.
b) Consider a beam of α particles with energy 7.7 MeV that has a Gaussian profile in both x and y axes with standard deviation $\sigma=a_{0} / 100$, where a_{0} is the Bohr radius. The beam is fired directly at a gold atom. Simulate the scattering of $10^{6} \alpha$ particles and calculate the fraction that "bounces back," i.e., scatters through an angle (θ) greater than 90°. The scattering angle θ is given by

$$
\tan \frac{1}{2} \theta=\frac{Z e^{2}}{2 \pi \epsilon_{0} E b^{\prime}}
$$

where Z is the atomic no. of the nucleus, e is the electron charge, ϵ_{0} is the permittivity of free space, E is the kinetic energy of the incident

α particle, and b is the impact parameter. For $\theta=90^{\circ}$,

$$
b=\frac{Z e^{2}}{2 \pi \epsilon_{0} E} .
$$

If b is less than the above value the particle bounces back.
You may use the following values:

```
Z = 79
e = 1.602e-19
E = 7.7e6*e
epsilon0 = 8.854e-12
a0 = 5.292e-11
sigma = a0/100
N = 1000000
```

