
Lab Exercise 1: Derivative, Random Numbers

Exercise 1.1: Derivative of a function: Find
dy

dx
for y(x) = x2e−x at x = 1 using both forward difference

(FD) and central difference (CD) methods for h=0.02,0.04,0.06,0.08,0.10. Make a table with the following

5 columns:
dy

dx
|Exact,

dy

dx
|FD, error (FD),

dy

dx
|CD, error (CD), and five rows corresponding to the five values

of h. Plot error (FD)/h vs h and error (CD)/h2 vs h on the same graph. Make a pdf output of the graph.

Error is defined as the difference between the exact and numerical value.

Exercise 1.2: Derivative from Discrete Data Points: The following table gives the position of a particle

in one dimension as a function of time. Find its speed at t = 0.1, 0.3, 0.5, ..., 1.9 s. Find if its position has

a maximum or a minimum during this interval. At approximately which time is the particle located at

the maxima/minima? Find its acceleration at that point to figure out if it is a maximum or a minimum.

t (s) x(t) (cm)

0.0 0.0

0.2 0.16

0.4 0.27

0.6 0.33

0.8 0.36

1.0 0.37

1.2 0.36

1.4 0.35

1.6 0.32

1.8 0.30

2.0 0.27

Exercise 1.3: The semi-empirical mass formula In nuclear physics, the semi-empirical mass formula is

a formula for calculating the approximate nuclear binding energy B of an atomic nucleus with atomic

number Z and mass number A:

B = a1 A − a2 A2/3 − a3
Z2

A1/3
− a4

(A − 2Z)2

A
+

a5

A1/2
,

where, in units of millions of electron volts, the constants are a1 = 15.8, a2 = 18.3, a3 = 0.714, a4 = 23.2,

and

a5 =







0 if A is odd,

12.0 if A and Z are both even,

−12.0 if A is even and Z is odd.

a) Write a program that takes as its input the values of A and Z, and prints out the binding energy

for the corresponding atom. Use your program to find the binding energy of an atom with A = 58

and Z = 28. (Hint: The correct answer is around 490 MeV.)

b) Modify your program to print out not the total binding energy B, but the binding energy per

nucleon, which is B/A.
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c) Now modify your program so that it takes as input just a single value of the atomic number Z

and then goes through all values of A from A = Z to A = 3Z, to find the one that has the largest

binding energy per nucleon. This is the most stable nucleus with the given atomic number. Have

your program print out the value of A for this most stable nucleus and the value of the binding

energy per nucleon.

d) Modify your program again so that, instead of taking Z as input, it runs through all values of Z

from 1 to 100 and prints out the most stable value of A for each one. At what value of Z does the

maximum binding energy per nucleon occur? (The true answer, in real life, is Z = 28, which is

nickel. You should find that the semi-empirical mass formula gets the answer roughly right, but

not exactly.)

Exercise 1.4: Radioactive decay chain The isotope 213Bi decays to stable 209Bi via one of two different

routes, with probabilities and half-lives thus:

Pb209

3.3 min

Tl209

Bi213

46 min

2.2 min

2.09%
97.91%

Bi209

Starting with a sample consisting of 10 000 atoms of 213Bi, simulate the decay of the atoms as in

Example 10.1 by dividing time into slices of length δt = 1 s each and on each step doing the following:

a) For each atom of 209Pb in turn, decide at random, with the appropriate probability, whether it

decays or not. (The probability can be calculated from Eq. (10.3).) Count the total number that

decay, subtract it from the number of 209Pb atoms, and add it to the number of 209Bi atoms.

b) Now do the same for 209Tl, except that decaying atoms are subtracted from the total for 209Tl and

added to the total for 209Pb.

c) For 213Bi the situation is more complicated: when a 213Bi atom decays you have to decide at ran-

dom with the appropriate probability the route by which it decays. Count the numbers that decay

by each route and add and subtract accordingly.

Note that you have to work up the chain from the bottom like this, not down from the top, to avoid

inadvertently making the same atom decay twice on a single step.

Keep track of the number of atoms of each of the four isotopes at all times for 20 000 seconds and

make a single graph showing the four numbers as a function of time on the same axes.
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